• 제목/요약/키워드: radial pulses

검색결과 32건 처리시간 0.019초

Localized MRI/MRS를 위한 차폐된 두뇌촬영용 $R^{2}$-경사자계코일 (Actively-Shielded Brain-Only $R^{2}$-Gradient Coil for Localized MRI/MRS)

  • 오창현;양윤정;김선경;이윤;이흥규;안창범
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.161-164
    • /
    • 1996
  • An actively-shielded $r^{2}$-gradient coil has been developed for brain localized MRI or MRS. Spatial localization is very useful for spatial volume selection in MRI or MR Spectroscopy(MRS). The radial(or $R^{2}-$) gradient coil is useful in reducing the artifact or in improving the SNR by selecting the volume with less number of RF pulses. It is, however, difficult to implement the coil with a gradient intensity strong enough to use it for practical whole-body MRI system. For example, the smallest volume size for selection is just 6 cm in diameter with a 250 Ampere of current driving for a whole-body system (in case of 70-cm-diameter). In this study, an asymetric $r^{2}$-coil with a small diameter of 35 cm has been designed and implemented for brain localized MRI or MRS. An 8-rod high-pass-type birdcage RF coil has also been implemented. The coil set has been developed for 1.0 Tesla Medison MRI system and its performance has been verified experimentally.

  • PDF

동맥경화 진단을 위한 맥파전달속도 측정시스템 개발 및 재현성 평가 (Development of a Pulse Wave Velocity Measurement System and Assessment of the System Reproducibility for the Diagnosis of Arteriosclerosis)

  • 이낙범;임재중;박영배;전영주
    • 대한한의진단학회지
    • /
    • 제9권1호
    • /
    • pp.112-124
    • /
    • 2005
  • Background: PWV is determined by dividing the distance by the time taken for the pulses traveling between two measuring sites, used as a marker of arterial stiffness and an important indicator for cardiovascular disease. Methods: A PWV measurement system, which offers a non-invasive, simple method of measurement, and simultaneous recording of six signlas(ECG, PCG and four pulse waves from carotid, femoral, radial and dorsalis pedis arteries) was developed. Seventeen healthy subjects with a mean age of 33 years(22 to 52) without any cardiovascular disease were participated for the experiment. Two observers(A and B) performed two consecutive measurements from the same subject in a random order. For the evaluation of stability and accuracy of the PWV measurement system, reproducibility of PWV from between-observer were also evaluated. Results: PWV $values(Mean{\pm}SD)$ measured by A were $7.07{\pm}1.48m/s$, $8.43{\pm}1.14m/s$ , $8.09{\pm}0.98m/s$ for aorta, arm, and leg, respectively. The values obtained from B were $6.76{\pm}1.00m/s$, $7.97{\pm}0.80m/s$, and $7.97{\pm}0.72m/s$ for aorta, arm, and leg, respectively. Between-observer $differences(mean{\pm}SEM)$ from the aorta, arm and leg were $0.14{\pm}0.15m/s$, $0.18{\pm}0.10m/s$ and $0.07{\pm}0.10m/s$. Reproducibility coefficients(2SD) from the aorta, arm, and leg were 0.62m/s, 0.84m/s and 0.86m/s. Correlation coefficients were significantly higher in aortic PWV, 0.93, compared to the coefficients for arm and leg. Coefficient of variance which reflects the reproducibility of the system ranged from $4.4{\sim}5.8%$ in all regional PWV. , Conclusion: Reproducibility of PWV in the study shows that the developed system has reliable and reproducible characteristics. The PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis and results with high reproducibility. Results of the PWV measurement system could contribute to various clinical applications in the future.

  • PDF