• 제목/요약/키워드: radial motion

Search Result 303, Processing Time 0.029 seconds

PLANETARY COMPANION IN K GIANT σ PERSEI

  • Lee, Byeong-Cheol;Han, Inwoo;Park, Myeong-Gu;Mkrtichian, David E.;Jeong, Gwanghui;Kim, Kang-Min;Valyavin, Gennady
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • We report the detection of an exoplanet candidate in orbit around ${\sigma}$ Persei from a radial velocity (RV) survey. The system exhibits periodic RV variations of $579.8{\pm}2.4$ days. The purpose of the survey is to search for low-amplitude and long-period RV variations in giants and examine the origin of the variations using the fiber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of Bohyunsan Optical Astronomy Observatory in Korea. We present high-accuracy RV measurements of ${\sigma}$ Per made from December 2003 to January 2014. We argue that the RV variations are not related to the surface inhomogeneities but instead a Keplerian motion of the planetary companion is the most likely explanation. Assuming a stellar mass of $2.25{\pm}0.5$ $M_{\odot}$, we obtain a minimum planetary companion mass of $6.5{\pm}1.0$ $M_{Jup}$, with an orbital semi-major axis of $1.8{\pm}0.1$ AU, and an eccentricity of $0.3{\pm}0.1$ around ${\sigma}$ Per.

Motion Derivatives based Entropy Feature Extraction Using High-Range Resolution Profiles for Estimating the Number of Targets and Seduction Chaff Detection (표적 개수 추정 및 근접 채프 탐지를 위한 고해상도 거리 프로파일을 이용한 움직임 미분 기반 엔트로피 특징 추출 기법)

  • Lee, Jung-Won;Choi, Gak-Gyu;Na, Kyoungil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • This paper proposes a new feature extraction method for automatically estimating the number of target and detecting the chaff using high range resolution profile(HRRP). Feature of one-dimensional range profile is expected to be limited or missing due to lack of information according to the time. The proposed method considers the dynamic movements of targets depending on the radial velocity. The observed HRRP sequence is used to construct a time-range distribution matrix, then assuming diverse radial velocities reflect the number of target and seduction chaff launch, the proposed method utilizes the characteristic of the gradient distribution on the time-range distribution matrix image, which is validated by electromagnetic computation data and dynamic simulation.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

Early Lateral Compartment Physeal Closure of the Elbow in Osteochondritis Dissecans of the Adolescent Baseball Players (청소년기 야구 선수의 박리성 골연골염에서 주관절 외측 구획 성장판의 조기 폐쇄)

  • Ku, Jung Hoei;Cho, Hyung Lae;Park, Ki Bong;Lee, Wan Seok
    • The Korean journal of sports medicine
    • /
    • v.36 no.4
    • /
    • pp.180-188
    • /
    • 2018
  • Purpose: The purpose of this study is to identify bilateral differences of physeal closure of the lateral compartment of the elbow in osteochondritis dissecans (OCD) and related factors with premature physeal closure. Methods: Initial radiographs of the bilateral elbows in 40 baseball players with OCD (group I) were reviewed for the status of physeal closure of the lateral compartment; capitellum, radial head, lateral epicondyle. Forty baseball players with medial epicondylar apophysitis (group II) were enrolled as a control. Relative status of physeal closure of dominant elbow was defined as early, same, and delayed. Bilateral differences of the status of physeal closure were analyzed between groups, and according to the radiographic stages, extent of the lesions and demographic factors in group I. Results: Significant early physeal closures of dominant elbows were identified in group I in capitellum (group I, 55%; group II, 3%), radial head (group I, 53%; group II, 3%), and lateral epicondyle (group I 37%; group II, 5%). In group I, advanced stage and extended lesion showed early lateral compartment physeal closure especially in capitellum and radial head, and players with longer career length and limitation of motion showed early closure. Conclusion: Over the half of the adolescent baseball players with OCD demonstrated early radiocapitellar physeal closures of dominant elbow in initial presentation. Because premature physeal closure contributes to the development of arthritis without appropriate radiocapitellar remodeling, early detection of OCD is essential for prevention of arthritis and successful conservative management.

Morphological and Biomechanical Study of the Pulley System of the Thumb

  • Kim, Ji-Won
    • Physical Therapy Korea
    • /
    • v.12 no.4
    • /
    • pp.33-40
    • /
    • 2005
  • The purpose of this study was to define more precisely the anatomy of the thumb flexor pulley system and to determine the relative contribution of each of the pulleys to the biomechanics of thumb motion at the metacarpophalangeal (MP) and interphalangeal (IP) joints. For this, 22 hands from 11 cadavers were used and randomly assigned to two groups. In the first group, the first annular (A1) pulley was cut first followed by the variable annular (Av) pulley and then the oblique pulley. In the second group, the oblique pulley was cut first followed by the, pulley and then the Av pulley. In 7 of 22 hands, it was a transverse structure parallel to the, pulley with a gap between the A1 and Av pulleys, referred to here as type I. In 9 hands, the A1 and Av pulleys were connected without any gap (type II). In 6 hands, the space between the A1 and Av pulleys were triangular in shape with fibers of the Av pulley converging toward the radial side (type III). In biomechanical study of both first and second experiments, there was no significant difference in MCP joint flexion between the all intact, A1 section, A1/Av section, A2 intact (A1/Av/oblique section), and no pulley configuration (p>.05). In occurring displacements less than 10 mm, there was no significant difference in IP joint flexion (p>.05). However, there was a significant decrease in IP joint flexion occurred in both 15 mm and 20 mm excursion (p<.05), when the oblique pulley was resected additionally after cutting the A1 and Av pulleys in first experiment, and when the A1 pulley was resected additionally after cutting the oblique pulley. According to the results, the injury of only the oblique pulley does not decrease thumb motion significantly. The oblique pulley injury with both the A1 and Av pulleys laceration decreased thumb motion significantly. The additional laceration of the A2 pulley does not decrease thumb motion.

  • PDF

Design of the Vision Based Head Tracker Using Area of Artificial Mark (인공표식의 면적을 이용하는 영상 기반 헤드 트랙커 설계)

  • 김종훈;이대우;조겸래
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.63-70
    • /
    • 2006
  • This paper describes research of using area of artificial mark on vision based head tracker system. A head tracker system consists of the translational and rotational motions which are detected by web camera. Results of the motion are taken from image processing and neural network. Because of the characteristics of cockpit, the specific color on the helmet is tracked for translational motion. And rotational motion is tracked via neural network. Ratio of two different colored area on the helmet is used as input of network. Neural network algorithms used, such as back-propagation and RBFN (Radial Basis Function Network). Both back-propagation using a characteristic of feedback and RBFN using a characteristic of statistics have a good performances for the tracking of nonlinear system such as a head motion. Finally, this paper analyzes and compares with tracking performance.

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF

Two- and Three-dimensional Analysis on the Bubble Flow Characteristics Using CPFD Simulation

  • Lim, Jong Hun;Lee, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.698-703
    • /
    • 2017
  • Bubble flow characteristics in fluidized beds were analyzed by CPFD simulation. A fluidized bed, which had the size of $0.3m-ID{\times}2.4m-high$, was modeled by commercial CPFD $Barracuda^{(R)}$. Properties of bed material were $d_p=150{\mu}m$, ${\rho}_p=2,330kg/m^3$, and $U_{mf}=0.02m/s$. Gas was uniformly distributed and the range of superficial gas velocity was 0.07 to 0.16 m/s. Two other geometries were modeled. The first was a three-dimensional model, and the other was a two-dimensional model of $0.01m{\times}0.3m{\times}2.4m$. Bubble size and rising velocity were simulated by axial and radial position according to superficial gas velocity. In the case of three-dimensional model, simulated bubble rising velocity was different from correlations, because there was zigzag motion in bubble flow, and bubble detection was duplicated. To exclude zigzag motion of bubble flow, bubble rising velocity was simulated in the two-dimensional model and compared to the result from three-dimensional model.