역합성 개구 레이다(Inverse Synthetic Aperture Radar:ISAR) 영상은 표적의 2차원 RCS(Radar Cross Section) 분포를 나타낸다. 레이더의 LOS(Line Of Sight) 방향으로 진행하는 표적에 대해 바이스태틱 ISAR는 영상의 수직 해상도를 얻을 수 없는 모노스태틱 ISAR의 약점을 보완할 수 있다. 그러나 바이스태틱 ISAR는 모노스태틱 ISAR 비해 긴 처리 시간과 다양한 산란 메커니즘을 가지고 있기 때문에, 바이스태틱 ISAR 영상만을 이용한 표적식별은 비효율적일 수 있다. 이에 본 논문에서는 레이더의 LOS 방향으로 진행하는 표적의 모노스태틱, 바이스태틱 ISAR 영상을 이용하여 표적 식별 성능을 분석하고, 두 레이다의 융합을 통한 표적식별 방법을 제시한다. 시뮬레이션 결과, 융합을 통한 식별 성능이 모노스태틱, 바이스태틱 ISAR 영상만을 이용한 식별 성능보다 더 효율적임을 확인할 수 있었다.
Monostatic/Bistatic inverse synthetic aperture radar (ISAR) images are two-dimensional radar cross section (RCS) distributions of a target. When there are many targets in a single radar beam, ISAR images are generated with targets overlapped, so it is difficult to perform the targets identification using the trained database. In addition, it is inefficient to perform target identification using only single monostatic and bistatic ISAR images separately because each method has its own advantages and weaknesses. Therefore, this paper analyzes multiple targets identification performances using monostatic/bistatic ISAR images and proposes a method of identification through fusion of two ISAR images. To identify multiple targets, we use image combination technique using trained single target images. Simulation results show effectiveness of proposed method.
바이스태틱 역합성 개구 레이다(Inverse Synthetic Aperture Radar: ISAR) 영상은 표적에 대한 2차원 산란분포를 나타내고, 이는 바이스태틱 표적식별에 이용될 수 있다. 하지만 바이스태틱 ISAR 영상은 바이스태틱 기하구조에 따라 그 산란 메커니즘이 다양하게 변화하고, 고유의 왜곡 때문에 표적의 정확한 거리-도플러 정보를 나타낼 수 없다. 따라서 이를 이용한 표적식별에서 효율적인 훈련 DB 구축은 핵심사항이 된다. 최근 모노스태틱 표적식별에서 효율적인 성능을 보였던 비행 시나리오 기반 훈련 데이터베이스(database: DB) 구축 기법을 바이스태틱 고해상도 거리측면도(High Resolution Range Profile: HRRP) 표적식별에 적용하여 바이스태틱 기하구조 내 효율적인 훈련 DB를 구축하는 연구가 수행되었고, 상기 연구는 레이다와 표적 사이의 거리가 충분히 먼 경우, 적은 양의 훈련 DB로도 높은 표적식별 성능을 획득할 수 있음을 보여주었다. 따라서 본 논문에서는 비행 시나리오 기반 훈련 DB 구축 기법을 바이스태틱 ISAR 영상 표적식별에 적용한 후, 그 성능과 효율성을 분석한다.
Radar target identification can be achieved by using various radar signatures, such as one-dimensional(1-D) range profile, 2-D radar images, and 1-D or 2-D scattering centers on a target. In this letter, five 1-D scattering center extraction methods are discussed - TLS(Total Least Square)-Prony, Fast Root-MUSIC (Multiple Signal Classification), Matrix-Pencil, GEESE(GEneralized Eigenvalues utilizing Signal-subspace Eigenvalues), TLS-ESPRIT(Total Least Squares - Estimation of Signal Parameters via Rotational Invariance Technique), These methods are compared in the context of estimation accuracy as well as a computational efficiency using a noisy data. Finally these methods are applied to the target classification experiment with the measured data in the POSTECH compact range facility.
바이스태틱(Bistatic) 레이다는 기존의 모노스태틱(Monostatic) 레이다로는 수행하기 어려운 저피탐(stealth) 표적에 대한 탐지 및 식별을 용이하게 해준다. 하지만 표적식별을 위해 바이스태틱 레이다의 수신신호로부터 고해상도 거리 측면도(high resolution range profile: HRRP)를 형성할 시, 바이스태틱 고유의 기하구조로 인해 바이스태틱 HRRP 내 왜곡현상이 발생하고, 이는 표적에 대한 정확한 거리 정보를 획득하기 어렵게 한다. 더욱이 바이스태틱 HRRP 내 나타나는 표적의 전자기적 산란 메커니즘은 바이스태틱 기하구조에 따라 다양하게 변하기 때문에 효율적인 훈련 데이터베이스 구축은 바이스태틱 표적식별에서의 핵심 사항이 된다. 본 논문에서는 모노스태틱 표적식별에서 효과적인 성능을 보였던 비행 시나리오에 기반한 훈련 데이터베이스 구축 기법을 바이스태틱 표적식별에 적용해 보고, 그 성능과 효율성을 분석한다. 시뮬레이션에서는 레이다와 표적의 거리가 충분히 먼 경우, 비행시나리오에 기반한 데이터베이스를 이용하여 효율적으로 바이스태틱 표적식별을 수행할 수 있음을 보인다.
In actual battlefield environment, IFF radar plays an important role in distinguishing friend or foe targets and assigning unique identification code to management. Performance of IFF radar is greatly affected by radio environment including atmosphere and terrain, target maneuvering and operation mode. In this paper, M&S tool is consisted of interrogator(IFF radar) and answering machine(target) for radar performance analysis. The wave propagation model using APM(Advanced Propagation Model) and radar actuator system were modeled by considering beam waveform of individual operation beam mode. Using this tool, IFF radar performance was analyzed through two experimental results. As a result, it is expected that performance of IFF radar can be predicted in the operational environment by considering target maneuvering and operation beam mode.
HRR(High Resolution Range) profile은 표적의 고유한 전자기학적 산란 특성을 1차원 레이더 영상으로 보여줄 뿐만 아니라, 잡음에 강인하면서 실시간으로 획득 가능하기 때문에 비행 표적을 식별하기 위한 레이더 신호로 많이 이용되고 있다. 하지만 HRR profile은 레이더와의 상대적인 각도에 대해 민감하게 변하기 때문에 하나의 표적에 대한 훈련 데이터베이스를 구축하려면 엄청난 양의 HRR profile이 필요하다. 이러한 문제를 해결하기 위하여 본 논문에서는 표적의 비행 기동 시나리오에 따른 훈련 데이터베이스 구축 방법을 기술한다. 이 방법을 사용하면 적은 양의 훈련 데이터베이스로도 높은 식별 성능을 얻을 수 있다.
도플러 레이다는 단일 주파수의 정현파를 이용하므로 움직이는 이동체의 속도만을 측정할 수 있다고 알려져 있다. 일반적으로 이동체의 거리를 측정하기 위해서는 FMCW 레이다나 펄스 레이다를 이용하여야 하는데, 이 경우 하드웨어 구성 및 신호처리가 복잡할 뿐만 아니라, 주파수 대역폭을 넓게 사용하기 때문에 24 GHz나 77 GHz 대역의 밀리미터파를 사용할 수밖에 없어 가격이 비싸다. 따라서 가격이 저렴한 도플러 레이다에서 다중 톤 주파수를 이용하여 이동체의 속도 외에 거리까지 센싱하는 연구가 시작되고 있다. 이에 본 연구에서는 2.4 GHz 도플러 레이다에 내장된 PLL만을 이용한 주파수 조정만으로도 이동체의 거리 센싱이 가능함을 보인다. 특히, 기존에 제안된 DC 기반의 거리 계산에서 필요한 DC 정보를 제거하고, 교류결합된 AC 정보만을 이용하여 거리를 센싱할 수 있음을 보인다. 제안된 기술은 2.4 GHz 대역의 이동체 식별용 특정소출력 무선기기 기술기준을 만족하므로 45 dBm EIRP 출력을 이용하여 이동체 거리 센싱이 필요한 다양한 응용이 가능하다.
Artificial intelligence is driving the Fourth Industrial Revolution and is in the spotlight as a general-purpose technology. As the data collection from the battlefield increases rapidly, the need to us artificial intelligence is increasing in the military, but it is still in its early stages. In order to identify maritime targets, Republic of Korea navy acquires images by ISAR(Inverse Synthetic Aperture Radar) of maritime patrol aircraft, and humans make out them. The radar image is displayed by synthesizing signals reflected from the target after radiating radar waves. In addition, day/night and all-weather observations are possible. In this study, an artificial intelligence is used to identify maritime targets based on radar images. Data of radar images of 24 maritime targets in Republic of Korea and North Korea acquired by ISAR were pre-processed, and an artificial intelligence algorithm(ResNet-50) was applied. The accuracy of maritime targets identification showed about 99%. Out of the 81 warship types, 75 types took less than 5 seconds, and 6 types took 15 to 163 seconds.
Doyoung Lee;Duk-jin Kim;Hwisong Kim;Juyoung Song;Junwoo Kim
대한원격탐사학회지
/
제40권2호
/
pp.167-177
/
2024
With advancements in satellite technology, interest in target detection and identification is increasing quantitatively and qualitatively. Synthetic Aperture Radar(SAR) images, which can be acquired regardless of weather conditions, have been applied to various areas combined with machine learning based detection algorithms. However, conventional studies primarily focused on the detection of stationary targets. In this study, we proposed a method to identify moving targets using an algorithm that integrates sub-aperture SAR images and cosine similarity calculations. Utilizing a transformer-based deep learning target detection model, we extracted the bounding box of each target, designated the area as a region of interest (ROI), estimated the similarity between sub-aperture SAR images, and determined movement based on a predefined similarity threshold. Through the proposed algorithm, the quantitative evaluation of target identification capability enhanced its accuracy compared to when training with the targets with two different classes. It signified the effectiveness of our approach in maintaining accuracy while reliably discerning whether a target is in motion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.