• Title/Summary/Keyword: radar target classification

Search Result 56, Processing Time 0.025 seconds

Target Classification for Multi-Function Radar Using Kinematics Features (운동학적 특징을 이용한 다기능 레이다 표적 분류)

  • Song, Junho;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.404-413
    • /
    • 2015
  • The target classification for ballistic target(BT) is one of the most critical issues of ballistic defence mode(BDM) in multi-function radar(MFR). Radar responds to the target according to the result of classifying BT and air breathing target(ABT) on BDM. Since the efficiency and accuracy of the classification is closely related to the capacity of the response to the ballistic missile offense, effective and accurate classification scheme is necessary. Generally, JEM(Jet Engine Modulation), HRR(High Range Resolution) and ISAR(Inverse Synthetic Array Radar) image are used for a target classification, which require specific radar waveform, data base and algorithms. In this paper, the classification method that is applicable to a MFR system in a real environment without specific waveform is proposed. The proposed classifier adopts kinematic data as a feature vector to save radar resources at the radar time and hardware point of view and is implemented by fuzzy logic of which simple implementation makes it possible to apply to the real environment. The performance of the proposed method is verified through measured data of the aircraft and simulated data of the ballistic missile.

Study on the Functional Architecture and Improvement Accuracy for Auto Target Classification on the SAR Image by using CNN Ensemble Model based on the Radar System for the Fighter (전투기용 레이다 기반 SAR 영상 자동표적분류 기능 구조 및 CNN 앙상블 모델을 이용한 표적분류 정확도 향상 방안 연구)

  • Lim, Dong Ju;Song, Se Ri;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2020
  • The fighter pilot uses radar mounted on the fighter to obtain high-resolution SAR (Synthetic Aperture Radar) images for a specific area of distance, and then the pilot visually classifies targets within the image. However, the target configuration captured in the SAR image is relatively small in size, and distortion of that type occurs depending on the depression angle, making it difficult for pilot to classify the type of target. Also, being present with various types of clutters, there should be errors in target classification and pilots should be even worse if tasks such as navigation and situational awareness are carried out simultaneously. In this paper, the concept of operation and functional structure of radar system for fighter jets were presented to transfer the SAR image target classification task of fighter pilots to radar system, and the method of target classification with high accuracy was studied using the CNN ensemble model to archive higher classification accuracy than single CNN model.

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

Radar target recognition using Gaussian mixture model over wide-angular region (Gaussian Mixture Model을 이용한 넓은 관측각에서의 효율적인 레이더 표적인식)

  • 서동규;김경태;김효태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.195-198
    • /
    • 2002
  • One-dimensional radar signature, such as range profile, is highly dependent on the aspect angle. Therefore, radar target recognition over wide angular region is a very difficult task. In this paper, we propose the Bayes classifier with Gaussian mixture model for radar target recognition over wide-angular region and compare performances of proposed technique and radar target recognition with subclasses concept in the literature of probability of correct classification ratio.

  • PDF

Classification of Doppler Audio Signals for Moving Target Using Hidden Markov Model in Pulse Doppler Radar (펄스 도플러 레이더에서 HMM을 이용한 이동표적의 도플러 오디오 신호 식별)

  • Sim, Jae-Hun;Lee, Jung-Ho;Bae, Keun-Sung
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.624-629
    • /
    • 2018
  • Classification of moving targets in Pulse Doppler Radar(PDR) for surveillance and reconnaissance purposes is generally carried out based on listening and training experience of Doppler audio signals by radar operator. In this paper, we proposed the automatic classification method to identify the class of moving target with Doppler audio signals using the Mel Frequency Cepstral Coefficients(MFCC) and the Hidden Markov Model(HMM) algorithm which are widely used in speech recognition and the classification performance was analyzed and verified by simulations.

Radar and Vision Sensor Fusion for Primary Vehicle Detection (레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발)

  • Yang, Seung-Han;Song, Bong-Sob;Um, Jae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

A Study on the Comparision of One-Dimensional Scattering Extraction Algorithms for Radar Target Identification (레이더 표적 구분을 위한 1차원 산란점 추출 기법 알고리즘들의 성능에 관한 비교 연구)

  • Jung, Ho-Ryung;Seo, Dong-Kyu;Kim, Kyung-Tae;Kim, Hyo-Tae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.193-197
    • /
    • 2003
  • Radar target identification can be achieved by using various radar signatures, such as one-dimensional(1-D) range profile, 2-D radar images, and 1-D or 2-D scattering centers on a target. In this letter, five 1-D scattering center extraction methods are discussed - TLS(Total Least Square)-Prony, Fast Root-MUSIC (Multiple Signal Classification), Matrix-Pencil, GEESE(GEneralized Eigenvalues utilizing Signal-subspace Eigenvalues), TLS-ESPRIT(Total Least Squares - Estimation of Signal Parameters via Rotational Invariance Technique), These methods are compared in the context of estimation accuracy as well as a computational efficiency using a noisy data. Finally these methods are applied to the target classification experiment with the measured data in the POSTECH compact range facility.

  • PDF

A Study on Automatic Target Recognition Using SAR Imagery (SAR 영상을 이용한 자동 표적 식별 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1063-1069
    • /
    • 2011
  • NCTR(Non-Cooperative Target Recognition) and ATR(Automatic Target Recognition) are methodologies to identify military targets using radar, optical, and infrared images. Among them, a strategy to recognize ground targets using synthetic aperature radar(SAR) images is called SAR ATR. In general, SAR ATR consists of three sequential stages: detection, discrimination and classification. In this paper, a modification of the polar mapping classifier(PMC) to identify inverse SAR(ISAR) images has been made in order to apply it to SAR ATR. In addition, a preprocessing scheme can mitigate the effect from the clutter, and information on the shadow is employed to improve the classification accuracy.

A Study on the Target Recognition Using Bistatic Measured Radar Signals (바이스태틱 레이다 측정 신호를 이용한 표적 인식에 관한 연구)

  • Lee, Sung-Jun;Lee, Seung-Jae;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.1002-1009
    • /
    • 2012
  • This paper shows the research about radar target recognition using the measured radar signals from MSU(Michgan State University) bistatic radar system. In this research, we first did the bistatic measurements at $30^{\circ}$, $60^{\circ}$, $90^{\circ}$ using F-14, Mig-29, and F-22 scale models. Then, we extract the target feature vectors using time-frequency analysis methods such as STFT(Short Time Fourier Transform) and CWT(Continous Wavelet Transform) and perform the target classification test using MLP(Multi-layerd Perceptron) neural network. The results show that the target classification performance is too much dependent on the bistatic angles and the best performance is obtained at the $60^{\circ}$ bistatic angle.

Classification of Convective/Stratiform Radar Echoes over a Summer Monsoon Front, and Their Optimal Use with TRMM PR Data

  • Oh, Hyun-Mi;Heo, Ki-Young;Ha, Kyung-Ja
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.465-474
    • /
    • 2009
  • Convective/stratiform radar echo classification schemes by Steiner et al. (1995) and Biggerstaff and Listemaa (2000) are examined on a monsoonal front during the summer monsoon-Changma period, which is organized as a cloud cluster with mesoscale convective complex. Target radar is S-band with wavelength of 10cm, spatial resolution of 1km, elevation angle interval of 0.5-1.0 degree, and minimum elevation angle of 0.19 degree at Jindo over the Korean Peninsula. For verification of rainfall amount retrieved from the echo classification, ground-based rain gauge observations (Automatic Weather Stations) are examined, converting the radar echo grid data to the station values using the inverse distance weighted method. Improvement from the echo classification is evaluated based on the correlation coefficient and the scattered diagram. Additionally, an optimal use method was designed to produce combined rainfalls from the radar echo and Tropical Rainfall Measuring Mission Precipitation Radar (TRMM/PR) data. Optimal values for the radar rain and TRMM/PR rain are inversely weighted according to the error variance statistics for each single station. It is noted how the rainfall distribution during the summer monsoon frontal system is improved from the classification of convective/stratiform echo and the use of the optimal use technique.