• 제목/요약/키워드: radar relationship

검색결과 106건 처리시간 0.021초

영동지역의 극한 대설에 대한 위성관측으로부터 구름 추적 (Cloud-cell Tracking Analysis using Satellite Image of Extreme Heavy Snowfall in the Yeongdong Region)

  • 조영준;권태영
    • 대한원격탐사학회지
    • /
    • 제30권1호
    • /
    • pp.83-107
    • /
    • 2014
  • 본 연구에서는 겨울철 영동지역에서 2001 ~ 2012(12년) 동안 일신적설 50 cm 이상의 3개 극한 대설사례를 선정하여 위성에서 관측된 구름을 추적하여 공간적 특성을 분석하였다. 그리고 그 특성을 레이더 강수와 비교하였다. 이 연구에서 선정된 영동지역 극한 대설사례는 영동지역(영동 앞바다)에서 발생하여 발달하거나 동한만 부근에서 발생하여 영동지역으로 이동해 들어오는 독립되고 잘 발달된 그리고 크기가 작은 대류형 구름과 관련이 있다. 주강수 시기의 이 구름덩어리의 최저휘도온도는 -$-40{\sim}-50^{\circ}C$로 낮고, 휘도온도 $-35^{\circ}C$ 혹은 $-40^{\circ}C$ 이하의 구름 크기는 약 17,000 ~ 40,000 $km^2$로 중규모 대류복합체($-52^{\circ}C$ 이하 구름크기 50,000 $km^2$)보다 작은 크기이다. 이 때 레이더의 강수면적(0.5 mm/hr 이상)도 약 4,000 ~ 8,000 $km^2$로 작고 독립된 강수 형태를 보인다. 위성의 구름영역과 레이더 강수영역은 영동 앞바다에 비슷하게 위치하였으나 레이더 강수의 중심이 상대적으로 영동 해안에 인접해 위치하였다. 또한 구름이 발달하는 과정에서 구름의 극값과 강수의 극값이 일치하지 않는 경우도 나타났다. 그러나 모든 사례에서 주강수 시기에 구름은 영동 앞바다에 위치하였다. 따라서 구름덩어리의 위치가 극한 대설에 있어 무엇보다 중요한 요소인 것으로 판단된다. 수증기 영상은 건조구역(암역)의 가장자리 북쪽에서 구름덩어리가 발달함을 보여주었다. 따라서 위성관측의 구름영상과 지상 레이더에 의한 강수관측 값과 비교하여 보았을 때, 위에 선정된 극한 대설 사례는 부저기압 혹은 소용돌이의 발달과 관련되어 있는 것으로 생각된다. 영동지역 극한 대설에 대한 초단기 예보에 있어 초기에 동한만 혹은 영동지역에서 작고 발달된 대류형 구름을 탐지하고 추적하는 것이 중요하다.

L, C, X-밴드 다편파 레이더 산란계를 이용한 논 벼 생육인자 추정 (Estimation of Paddy Rice Growth Parameters Using L, C, X-bands Polarimetric Scatterometer)

  • 김이현;홍석영;이훈열
    • 대한원격탐사학회지
    • /
    • 제25권1호
    • /
    • pp.31-44
    • /
    • 2009
  • 본 연구에서는 다편파 산란계 시스템을 이용하여 얻어진 후방산란계수의 연중 변화를 편파와 입사각에 따라 알아보고 벼 생육인자와의 관계를 통하여 생육인자를 추정하고자 하였다. 2007년도 국립농업과학원 시험포장에 다편파산란계 시스템(L, C, X-band 안테나, 네트워크분석기, RF cable, 입사각 $20^{\circ}{\sim}60^{\circ}$)을 제작 구축하고 벼 이앙기에서 수확기까지 산란특성을 주기적으로 관측하였으며 레이더 방정식을 이용하여 후방산란계수를 계산하여 자료 분석에 사용하였다. 모든 안테나 밴드에서 벼 생육초기(5월말$\sim$6월초)에는 VV-편파가 HH-, HV-편파보다 후방산란계수가 높게 나타났다. C-band의 경우 모든 입사각에서 벼가 자라면서 HH-편파 후방산란계수가 증가하다가 출수기(8월중순경)에 가장 높았고 그 이후 감소하는 경향이었다. X-band는 모든 편파의 후방산란계수가 벼 유수형성기(7월말경)까지 증가하다가 그 후 감소하였으며 등숙기인 9월 중순 이후 다시 증가하는 dual-peak 현상을 보였는데, 특히 VV-편파의 경우 9월 초순부터 후방산란계수 종가가 다른 편파에 비해 크게 나타났다. 파장별 밴드, 편파, 입사각도별 후방산란계수와 작물 생육과의 관계를 분석한 결과 L-band는 바이오매스와의 상관이 높게 나타났고 C-band에서는 엽면적지수와 초장과의 상관이 높게 나타났으며 X-band는 이삭 건물중과 상관이 높게 나타났다 후방산란계수를 이용하여 생육을 추정할 수 있는 회귀식을 작성하고 실측값과의 비교를 통하여 작물 생육 추정을 위한 최적 조건을 구명하였다.

연안 해양기상(해상풍, 수온) 관측을 위한 항공기 원격탐사 시스템 (Development of Airborne Remote Sensing System for Monitoring Marine Meteorology (Sea Surface Wind and Temperature))

  • 김덕진;조양기;강기묵;김진우;김승희
    • 한국해양학회지:바다
    • /
    • 제18권1호
    • /
    • pp.32-39
    • /
    • 2013
  • 인공위성은 넓은 지역에 대한 전 세계의 정보를 획득하는데 유용하지만, 좁은 지역에 대한 적시적소에 촬영하는 데는 한계가 있다. 이러한 단점을 극복하기 위하여 본 연구에서는 항공기 원격탐사 시스템을 구축하였다. 항공기 원격탐사시스템은 SAR센서와 열적외선 센서로 구성되어 있으며, 획득된 자료의 방사 및 기사보정을 위하여 GPS, IMU, 온도/습도계 등도 설치하였다. SAR영상은 표면 거칠기에 따라 민감하게 반응하여 밝기 값이 달라지게 되며, 해양에서는 바람에 의해 쉽게 생성 되는 표면 장력파의 진폭이 이러한 표면 거칠기를 야기한다. 따라서 정량화된 SAR의 후방산란과 해상풍 사이의 관계식을 통해 해상풍 추출이 가능하다. 한편, 열적외선 센서는 물체의 온도를 측정하는데 유용하며, 물체와 센서 사이의 대기에 의한 효과를 보정한 후 수온 추출이 이루어진다. 이 두 센서를 탑재한 항공기로 서해안 일대를 4차례 시험비행을 수행하였으며, 이로부터 획득된 SAR 및 열적외선 영상의 품질이 연안환경 모니터링 및 해양기상 자료 추출에 충분함을 보여주었다.

상세화 기법을 통한 한반도 공간 강우장 분석 (Analysis of Spatial Precipitation Field Using Downscaling on the Korean Peninsula)

  • 조혜련;황석환;조용식;최민하
    • 한국수자원학회논문집
    • /
    • 제46권11호
    • /
    • pp.1129-1140
    • /
    • 2013
  • 강우는 수문 순환에서 중요한 요소 중에 하나로 시 공간적 변동성이 크므로 정확한 공간 강우장의 파악이 요구된다. 열대강우 관측 위성(Tropical Rainfall Monitoring Mission, TRMM)에서 제공하는 3B43 월 누적 강우량 자료는 25 km의 공간 해상도를 갖고 있어 공간 강우장의 정확성을 높이기 위해 상세화 기법을 적용하여 1 km의 공간 해상도로 생성하였다. Terra 위성에 탑재된 MODIS (Moderate Resolution Imaging Spectroradiometers) 센서가 제공하는 정규식생지수(Normalized Difference Vegetation Index, NDVI) (공간 해상도 1 km)와 강우 자료의 관계성을 회귀식으로 나타냈고 상세화 기법에 적용하였다. 이에 따른 결과를 지점과 위성 강우 자료와의 차이를 통해 보정하는 방법인 GDA (Geographical Difference Analysis)와 지점과 위성 강우 자료와의 비율로 편차를 보정하는 GRA (Geographical Ratio Analysis) 상세화 기법을 사용하여 공간 강우장을 나타내었다. 우리나라의 공간 강우장 결과를 지점 자료를 기준으로 비교 검증을 실시하였다. 그 결과 GDA 상세화 기법의 경우가 2009년(Bias=4.26 mm, RMSE=172.16 mm, MAE=141.95 mm, IOA=0.64), 2011년(Bias=17.21 mm, RMSE=253.43 mm, MAE=310.56 mm, IOA=0.62)으로 가장 잘 맞는 것으로 나타났다. 이를 바탕으로 우리나라의 공간 강우장을 1 km의 공간 해상도로 파악할 수 있었으며, 더 나아가 지점의 수를 늘려 보정을 정밀하게 하거나, 강우 레이더 자료를 가지고 상세화 기법을 적용한다면 더욱 정확한 공간 강우장을 파악할 수 있을 것이다.

L밴드 인공위성 SAR를 이용한 동해 연안 해상풍 산출 및 오차 특성 (L-band SAR-derived Sea Surface Wind Retrieval off the East Coast of Korea and Error Characteristics)

  • 김태성;박경애;최원문;홍성욱;최병철;신인철;김경렬
    • 대한원격탐사학회지
    • /
    • 제28권5호
    • /
    • pp.477-487
    • /
    • 2012
  • L밴드 ALOS SAR 자료를 활용하여 우리나라 동해 연안해역의 해상풍을 산출하고 오차의 특성을 분석하였다. 그 동안 인공위성 산란계를 이용한 해상풍 산출이 본질적으로 불가능하였던 연안 해역에 대하여 SAR 자료로부터 고해상도 해상풍을 산출할 수 있었다. 산출된 SAR 바람을 해양 부이 자료와 비교한 결과 0.67 m/s의 작은 오차로 잘 일치함을 보여주었다. 서로 다른 L밴드 ALOS PALSAR GMF 2007 모델과 2009 모델로 산출된 해상풍을 인공위성 산란계 해상풍과 비교한 결과, 풍속과 풍향 각각 2.16 m/s와 $19.24^{\circ}$, 3.62 m/s와 $28.02^{\circ}$의 제곱평균근오차를 보이며, 인공위성 산란계의 기대 오차보다 다소 큰 경향을 나타냈다. 또한 산출된 L밴드 SAR 바람장은 풍향과 입사각에 대하여 특징적인 의존성을 보였다. L밴드 GMF 2007 모델은 $21^{\circ}$ 보다 작은 입사각에 대하여 큰 오차를 보인 반면, L밴드 GMF 2009 모델은 입사각에 대한 효과를 선형함수가 아니라 이차함수로 고려하여 주었기 때문에 작은 입사각 범위에서 풍속 오차가 6.8 m/s에서 1.14 m/s로 크게 감소하는 결과를 보였다. 본 연구는 L밴드 SAR 바람장의 다양한 활용을 위해서는 풍향과 입사각 효과, 그리고 다른 잠재적인 오차의 요인을 집중적으로 연구하여야 함을 강조하였다.

데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구 (Prediction of field failure rate using data mining in the Automotive semiconductor)

  • 윤경식;정희운;박승범
    • 기술혁신연구
    • /
    • 제26권3호
    • /
    • pp.37-68
    • /
    • 2018
  • 본 논문에서는 차량용 반도체가 제품 출하 후 사용 환경에 따라 발생되는 불량률을 데이터 마이닝 기법을 이용하여 분석하였다. 20세기 이후 가장 보편적인 이동수단인 자동차는 전자 컨트롤 장치와 자동차용 반도체의 사용량이 급격히 증가하면서 매우 빠른 속도로 진화하고 있다. 자동차용 반도체는 차량용 전자 컨트롤 장치 중 핵심 부품으로 소비자들에게 안정성, 연료 사용의 효율성, 운전의 안정감을 제공하기 위해 사용되고 있다. 자동차용 반도체는 가솔린엔진, 디젤 엔진, 전기 모터를 컨트롤하는 기술, 헤드업 디스플레이, 차선 유지 시스템 등 많은 부분에 적용되고 있다. 이와 같이 반도체는 자동차를 구성하는 거의 모든 전자 컨트롤 장치에 적용되고 있으며 기계적인 장치를 단순히 조합한 이상의 효과를 만들어 내고 있다. 자동차용 반도체는 10년 이상의 자동차 사용 기간을 고려하여 높은 신뢰성, 내구성, 장기공급 등의 특성을 요구하고 있다. 자동차용 반도체의 신뢰성은 자동차의 안전성과 직접적으로 연결되기 때문이다. 반도체업계에서는 JEDEC과 AEC 등의 산업 표준 규격을 이용하여 자동차용 반도체의 신뢰성을 평가하고 있다. 또한 자동차 산업에서 표준으로 제시한 신뢰성 실험 방법과 그 결과를 이용하여 개발 초기 단계 및 제품 양산 초기단계에서 제품의 수명을 예측 하고 있다. 하지만 고객의 다양한 사용 조건 및 사용 시간 등 여러 변수들에 의해 발생되는 불량률을 예측하는 데는 한계가 있다. 이러한 한계점을 극복하기 위하여 학계와 산업계에서 많은 연구가 있어왔다. 그 중 데이터 마이닝 기법을 이용한 연구가 다수의 반도체 분야에서 진행되고 있지만, 아직 자동차용 반도체에 대한 적용 및 연구는 미비한 상태이다. 이러한 관점에서 본 연구는 데이터 마이닝 기법을 이용하여 반도체 조립(Assembly)과 패키지 테스트(Package test) 공정 중 발생 된 데이터들간의 연관성을 규명하고, 고객 불량 데이터를 이용하여 잠재 불량률 예측에 적합한 데이터 마이닝 기법을 검증하였다.