• Title/Summary/Keyword: radar image

Search Result 562, Processing Time 0.033 seconds

Examination of the Ground Remote Monitoring System for Coastal Environmental Elements - Marine Radar and Camera System - (연안 환경 요소에 대한 지상 원격 관측 방법 고찰 - 마린 레이다와 카메라 시스템 관측을 중심으로 -)

  • Kim, Tae-Rim;Jang, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.403-410
    • /
    • 2011
  • Consistent observation with high temporal and spatial resolution is required for an efficient monitoring of coastal environments. Remote monitoring system installed on the ground is capable of simultaneous observation of wide coastal area and consistent observation with high frequency, which a small number of in-situ measurements cannot manage. This paper studies two typical ground based coastal monitoring system, marine radar and camera system. Marine radar can produce time series of frequency spectrum by integrating wave number spectrum calculated from spatial and temporal variation of waves in the radar image. The time averaged radar images of waves can analyze wave breaking zone, rip currents and location of littoral bars. Camera system can observe temporal variation of foam generation originated from coastal contamination as well as shoreline changes. By extracting the part of foams from rectified images, quantitative analysis of temporal foam variation can be done. By using the two above systems of different characteristics, synergetic benefit can be achieved.

Machine learning based radar imaging algorithm for drone detection and classification (드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용)

  • Moon, Min-Jung;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.619-627
    • /
    • 2021
  • Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

A Study on Radar Video Fusion Systems for Pedestrian and Vehicle Detection (보행자 및 차량 검지를 위한 레이더 영상 융복합 시스템 연구)

  • Sung-Youn Cho;Yeo-Hwan Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.197-205
    • /
    • 2024
  • Development of AI and big data-based algorithms to advance and optimize the recognition and detection performance of various static/dynamic vehicles in front and around the vehicle at a time when securing driving safety is the most important point in the development and commercialization of autonomous vehicles. etc. are being studied. However, there are many research cases for recognizing the same vehicle by using the unique advantages of radar and camera, but deep learning image processing technology is not used, or only a short distance is detected as the same target due to radar performance problems. Therefore, there is a need for a convergence-based vehicle recognition method that configures a dataset that can be collected from radar equipment and camera equipment, calculates the error of the dataset, and recognizes it as the same target. In this paper, we aim to develop a technology that can link location information according to the installation location because data errors occur because it is judged as the same object depending on the installation location of the radar and CCTV (video).

Analysis of Target Identification Performances Using Bistatic ISAR Images (바이스태틱 ISAR 영상을 이용한 표적식별 성능 분석)

  • Lee, Seung-Jae;Lee, Seong-Hyeon;Kang, Min-Seok;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.566-576
    • /
    • 2016
  • Inverse synthetic aperture radar(ISAR) image generated from bistatic radar(Bi-ISAR) represents two-dimensional scattering distribution of a target, and the Bi-ISAR can be used for bistatic target identification. However, Bi-ISAR has large variability in scattering mechanisms depending on bistatic configurations and do not represent exact range-Doppler information of a target due to inherent distortion. Thus, an efficient training DB construction is the most important factor in target identification using Bi-ISARs. Recently, a database construction method based on realistic flight scenarios of a target, which provides a reliable identification performance for the monostatic target identification, was applied to target identification using high resolution range profiles(HRRPs) generated from bistatic radar(Bi-HRRPs), to construct efficient training DB under bistatic configurations. Consequently, high identification performance was achieved using only small amount of training Bi-HRRPs, when the target is a considerable distance away from the bistatic radar. Thus, flight scenarios based training DB construction is applied to target identification using Bi-ISARs. Then, the capability and efficiency of the method is analyzed.

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Ship detection from satellite remote sensing is a crucial application for global monitoring for the purpose of protecting the marine environment and ensuring marine security. It permits to monitor sea traffic including fisheries, and to associate ships with oil discharge. An automatic ship detection approach for RADARSAT Fine Synthetic Aperture Radar (SAR) image is described and assessed using in situ ship validation information collected during field experiments conducted on August 6, 2004. Ship detection algorithms developed here consist of five stages: calibration, land masking, prescreening, point positioning, and discrimination. The fine image was acquired of Ulsan Port, located in southeast Korea, and during the acquisition, wind speeds between 0 m/s and 0.4 m/s were reported. The detection approach is applied to anchoring ships in the anchorage area of the port and its results are compared with validation data based on Vessel Traffic Service (VTS) radar. Our analysis for anchoring ships, above 68 m in length (LOA), indicates a 100% ship detection rate for the RADARSAT single beam mode. It is shown that the ship detection performance of SAR for smaller ships like barge could be higher than the land-based radar. The proposed method is also applied to estimate the ship's dimensions of length and breadth from SAR radar cross section(RCS), but those values were comparatively higher than the actual sizes because of layover and shadow effects of SAR.

  • PDF

Very short-term rainfall prediction based on radar image learning using deep neural network (심층신경망을 이용한 레이더 영상 학습 기반 초단시간 강우예측)

  • Yoon, Seongsim;Park, Heeseong;Shin, Hongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.12
    • /
    • pp.1159-1172
    • /
    • 2020
  • This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.

A Ground Penetrating Radar Detection of Buried Cavities and Pipes and Development of an Image Processing Program (지반 공동 및 매립관의 지반 투과 레이더 탐사 및 이미지 처리 프로그램 개발)

  • Lee, Hyun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • Many ground subsidence accidents have happened in Korea. The accident was caused by the subsidence and leakage of the deteriorated sewage pipe. This study aims to establish the empirical data of the ground penetration radar(GPR) detection for ground subsidence. A test bed was also manufactured for the same purpose. The GPR detection variables are embedment depth and horizontal distance of embedded cast iron pipe and expanded polystyrene(EPS). From the detection results, the EPS embedded by a depth of 1.5m was difficult for detection. The EPS closely embedded to the cast iron pipe within a 0.5m distance had a very strong cast iron pipe signal. Therefore, the detection was impossible. This study developed an image processing program, called the GPR image processing program(GPRiPP), to process the GPR detection results. Its major function is the gain function, which amplifies the wiggle wave signal. Compared to the existing programs, the GPRiPP is capable of showing a similar image processing performance.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

SWT -based Wavelet Filter Application for De-noising of Remotely Sensed Imageries

  • Yoo Hee-Young;Lee Kiwon;Kwon Byung-Doo
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.505-508
    • /
    • 2005
  • Wavelet scheme can be applied to the various remote sensing problems: conventional multi-resolution image analysis, compression of large image sets, fusion of heterogeneous sensor image and segmentation of features. In this study, we attempted wavelet-based filtering and its analysis. Traditionally, statistical methods and adaptive filter are used to manipulate noises in the image processing procedure. While we tried to filter random noise from optical image and radar image using Discrete Wavelet Transform (DW1) and Stationary Wavelet Transform (SW1) and compared with existing methods such as median filter and adaptive filter. In result, SWT preserved boundaries and reduced noises most effectively. If appropriate thresholds are used, wavelet filtering will be applied to detect road boundaries, buildings, cars and other complex features from high-resolution imagery in an urban environment as well as noise filtering

  • PDF

SAR Processing Software for Ground Station

  • Kwak, Sung-Hee;Lee, Young-Ran;Shin, Dong-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.634-636
    • /
    • 2003
  • Satrec Initiative (Si) is developing a ground processing system for Synthetic Aperture Radar (SAR) data. SAR provides its own illumination and is not dependent on the light from sun, thus permitting continuous day/night operation and all-weather imaging. The system is capable of producing standard level products from SAR signal. Hence, the system should be able to perform matched filtering, range compression, azimuth compression, multi-look image generation, and geocoded image generation. This paper will describe the processing steps including algorithms, design, and accuracy of the Si's SAR processing system by comparing with commercial software.

  • PDF