• Title/Summary/Keyword: radar image

Search Result 562, Processing Time 0.027 seconds

Development of Snowfall Retrieval Algorithm by Combining Measurements from CloudSat, AQUA and NOAA Satellites for the Korean Peninsula

  • Kim, Young-Seup;Kim, Na-Ri;Park, Kyung-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2011
  • Cloudsat satellite data is sensitive to snowfall and collected during each month beginning with Dec 2007 and ending Feb 2008. In this study, we attempt to develop a snowfall retrieval algorithm using a combination of radiometer and cloud radar data. We trained data from the relation between brightness temperature measurements from NOAA's Advanced Microwave Sounder Unit-B(AMSU-B) and the radar reflectivity of the 2B-GEOPROF product from W-band(94 GHz) cloud radar onboard Cloudsat and applied it to the Korea peninsula. We use a principal components analysis to quantify the variations that are the result of the radiometric signatures of snowfall from those of the surface. Finally, we quantify the correlation between the higher principal component (orthogonal to surface variability) of the microwave radiances and the precipitation-sensitive CloudSat radar reflectivities. This work summarizes the results of applying this approach to observations over the East Sea during Feb. 2008. The retrieved data show reasonable estimation for snowfall rate compared with Cloudsat vertical image.

Estimation of Instantaneous Sea Level Using SAR Interferometry

  • Kim, Sang-Wan;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.5
    • /
    • pp.255-261
    • /
    • 2002
  • Strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures installed on the bottom. We successfully obtained 21 coherent interferograms from 11 JERS-1 SAR data sets even though orbital baselines (up to 2 km) or temporal baselines (up to 1 year) were relatively large. The coherent phases preserved in the sea farms are probably formed by double bouncing from sea surface and the sea farming structures, and consequently they are correlated with tide height (or instantaneous sea level). Phase unwrapping is required to restore the absolute sea level. We show that radar backscattering intensity is roughly correlated with the sea surface height, and utilize the fact to determine the wrapping counts. While the SAR image intensity gives a rough range of absolute sea level, the interferometric phases provide the detailed relative height variations within a limit of $2{\pi}$ (or 15.3 cm) with respect to the sea level at the moment of the master data acquisition. A combined estimation results in an instantaneous sea level. The radar measurements were verified using tide gauge records, and the results yielded a correlation coefficient of 0.96 with an r.m.s. error of 6.0 cm. The results demonstrate that radar interferometry is a promising approach to sea level measurement in the near coastal regions.

The Application of Marine X-band Radar to Measure Wave Condition during Sea Trial

  • Park, Gun-Il;Choi, Jae-Woong;Kang, Yun-Tae;Ha, Mun-Keun;Jang, Hyun-Sook;Park, Jun-Soo;Park, Seung-Geun;Kwon, Sun-Hong
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.34-48
    • /
    • 2006
  • The visual observation of wave condition depends on the observer's skill and experience. Also, the environmental conditions such as light and cloud heavily influence the visual measurement. In the speed test of sea trial, the wave measurement should be objective and accurate. In this paper, the problems of visual measurement and their effects on speed test are described. To overcome those problems, we developed the wave measurement system using commercial marine X-band radar, WaveFinder. The system installed at inland base was calibrated by waverider buoy and then the system's operability was defined. Onboard tests had also been performed three times for formal wave measurement to correct the ship speed. The results illustrated very good agreement with visual observation by experts. It can be concluded that the system would be useful to measure wave and swell information for the sea trial, irrespective of day and night.

A study on Modeling Method to Extract some Information for Scatterer Points of a Target (표적 산란점 정보 추출을 위한 모델링 기법 연구)

  • Nam, Dukjin;Hwang, Inseong
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.4
    • /
    • pp.21-29
    • /
    • 2021
  • Inverse synthetic aperture radar (ISAR) image is a powerful tool to show the major scattering regions (scatterer points) on the target. It is normally used to identify and classify targets. Finding information for the scatter points of ISAR image plays an important role in modeling the features of targets. In this paper, we propose a modeling method to extract some information about the scatterer points by minimizing approximating error. Here, the extracted information include not only the location of scatterer points but also some statistical data about the error of the their location. These extracted data can be used to implement the randomness of the location of the scatterer points. Furthermore, we reconstruct an image from the extracted data for scatterer points obtained by our proposed method. And we show that the reconstructed ISAR image is well approximated to the original ISAR image in order to justify our proposed modeling method.

Detection of a Point Target Movement with SAR Interferometry

  • Jun, Jung-Hee;Ka, Min-ho
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.355-365
    • /
    • 2000
  • The interferometric correlation, or coherence, is calculated to measure the variance of the interferometric phase and amplitude within the neighbourhood of any location within the image at a result of SAR (Synthetic Aperture Radar) interferometric process which utilizes the phase information of the images. The coherence contains additional information that is useful for detecting point targets which change their location in an area of interest (AOI). In this research, a RGB colour composite image was generated with a intensity image (master image), a intensity change image as a difference between master image and slave image, and a coherence image generated as a part of SAR interferometric processing. We developed a technique performing detection of a point target movement using SAR interferometry and applied it to suitable tandem pair images of ERS-1 and ERS-2 as test data. The possibility of change detection of a point target in the AOI could be identified with the technique proposed in this research.

Imaging Method for Array Structured Bistatic Ground-to-Air Radar (배열 구조 바이스태틱 지대공 레이다의 이미징 기법)

  • Choi, Sang-Hyun;Yang, Dong-Hyeuk;Song, Ji-Min;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.599-607
    • /
    • 2018
  • This paper presents a ground-to-air bistatic radar system and its implementation algorithm, which resembles an SAR(synthetic aperture radar) reconstruction algorithm. Via cooperative working between a standoff transmitting radar and an array of ground based receiving radars, it detects and images moving targets under clutter in the air. In the proposed system, the whole receiving antenna aperture is synthesized by physical ground based radars, and thus, unlike conventional SAR, it does not require long illumination time of the target area. The reconstruction algorithm uses planewave approximation based polar format processing, which alleviates the requirement of positioning the receiving radars, which can cause grating lobes if not chosen properly. We derive a reconstruction algorithm including clutter suppression and discuss implementation issues, such as the resolution of a reconstructed image and the method of compensation for the irregularity of the receiving radars' positions. A simulation that validates the proposed algorithm is also shown.

Dual-band Monopulse Receiver for Tracking Radar (추적 레이다용 Dual-band 모노펄스 수신기)

  • Yang Seong-Uk;Park Dong-Min;Na Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.767-772
    • /
    • 2006
  • The receiver of this paper is Dual-band monopulse type for prototype of tracking radar. Localization of radar technology is an issue of SamsungThales and go into development. Dual-band radar in comparison with Single-band radar requires higher cost and power consumption but there are many advantages of dealing with jamming, detection range, image signal rejection, cloud-rain influence, clutter, resolution. The receiver is comprised of X-band RF head module, Ka-band RF head module and common IF module. Each signal of X-band and Ka-band is selected by the switch in If module. Phase shifter in IF module of local stage controls the phase of sum, azimuth, elevation channel. In the test result, gain is $40{\pm}3 dB$, isolation of transmitter/receiver is 39 dBc, dynamic range is 110 dB and noise figure of each channel is 4.5dB and 6.9dB.

A Study on ISAR Imaging Algorithm for Radar Target Recognition (표적 구분을 위한 ISAR 영상 기법에 대한 연구)

  • Park, Jong-Il;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.294-303
    • /
    • 2008
  • ISAR(Inverse Synthetic Aperture Radar) images represent the 2-D(two-dimensional) spatial distribution of RCS (Radar Cross Section) of an object, and they can be applied to the problem of target identification. A traditional approach to ISAR imaging is to use a 2-D IFFT(Inverse Fast Fourier Transform). However, the 2-D IFFT results in low resolution ISAR images especially when the measured frequency bandwidth and angular region are limited. In order to improve the resolution capability of the Fourier transform, various high-resolution spectral estimation approaches have been applied to obtain ISAR images, such as AR(Auto Regressive), MUSIC(Multiple Signal Classification) or Modified MUSIC algorithms. In this study, these high-resolution spectral estimators as well as 2-D IFFT approach are combined with a recently developed ISAR image classification algorithm, and their performances are carefully analyzed and compared in the framework of radar target recognition.

Automatic Detection and Analysis of Rip Currents at Haeundae Beach using X-band Marine Radar (항해용 X-band 레이다를 이용한 해운대해수욕장 이안류 자동탐지 및 특성 분석)

  • Oh, Chanyeong;Ahn, Kyungmo;Cheon, Se-Hyeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.485-492
    • /
    • 2019
  • The observation system has been developed to investigate the rip currents at Haeundae beach using X-band marine radar. X-band radar system can observe shape, size, and velocity of rip currents, which is difficult to obtain through field observation by conventional device. Algorithms which automatically detect locations, shapes, and magnitudes of rip currents were developed using time averaged X-band radar sea clutter images. X-band sea clutter images are transformed through 3D FFT into 2D wave number spectrum and frequency spectrum. Rip current velocities were estimated using differences in wave-number spectra and wave frequency spectra due to Doppler shift. The algorithm was verified by drift experiments. At Haeundae beach, the radar system exactly located the rip currents and found to be sustained for 1-2 days at fixed locations.

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.