• Title/Summary/Keyword: rRNA genes

Search Result 781, Processing Time 0.035 seconds

Complete genome sequence of Gordonia sp. MMS17-SY073, a soil actinobacterium (토양 방선균인 Gordonia sp. MMS17-SY073 균주의 유전체 분석)

  • Kim, Yeong Seok;Kim, Seung Bum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.303-305
    • /
    • 2019
  • An actinobacterial strain designated Gordonia sp. MMS17-SY073 (=KCTC 49257) was isolated from a coastal soil of an island, and its complete genome was analyzed. A single contig consisting of 5,962,176 bp with the G + C content of 67.4% was obtained, and the annotation resulted in 5,201 protein-coding genes, 6 rRNA genes and 45 tRNA genes. Strain MMS17-SY073 was closest to the type strain of Gordonia soli based on the 16S rRNA gene sequence comparison, sharing 98.5% sequence similarity. A number of biosynthetic gene clusters for secondary metabolites, non-ribosomal peptide synthetase types in particular, could be identified from the genome.

Emergence of CTX-M-15 Extended Spectrum β-lactamase and ArmA-Producing Enterobacter cloacae (CTX-M-15형 Extended Spectrum β-lactamase와 ArmA 동시 생성 Enterobacter cloacae의 출현)

  • Sung, Ji-Youn
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.313-318
    • /
    • 2015
  • We investigated the prevalence of extended spectrum ${\beta}$-lactamase (ESBL) genes and 16S rRNA methyltransferase genes to study antimicrobial resistance mechanisms of Enterobacter cloacae strains isolated from a university hospital in the Chungcheong province of Korea. Eight of the bacteria strains involved in this study contained CTX-M-15 type ESBL. Among 8 strains harboring the ESBL gene, 3 strains also harbored armA gene. The three isolates showed resistance to antimicrobial agents belonged to third cephalosporin, aminoglycoside, and fluoroquinolones. Furthermore, interspecies plasmid transfer of the antimicrobial resistant genes may induced horizontal spreading of the genes and emergence of multidrug resistant bacteria. Therefore, surveillance for existence of antimicrobial resistance determinants is important to prevent distribution of antimicrobial resistant strains.

The complete chloroplast genome sequence of Rhododendron caucasicum (Ericaceae)

  • Myounghai KWAK;Rainer W. BUSSMANN
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.3
    • /
    • pp.230-236
    • /
    • 2023
  • Rhododendron caucasicum Pall. is a shrub distributed in the mountainous areas of the Caucasus from northeastern Türkiye towards the Caspian Sea. This study reports the first complete chloroplast genome sequence of R. caucasicum. The plastome is 199,487 base pairs (bp) long and exhibits a typical quadripartite structure comprising a large single-copy region of 107,645 bp, a small single-copy region of 2,598 bp, and a pair of identical inverted repeat regions of 44,622 bp each. It contains 143 genes, comprising 93 protein-coding genes, 42 tRNA genes, and eight rRNA genes. The large chloroplast genome size is likely due to the expansion of inverted repeats. A phylogenetic analysis of chloroplast genomes with other Rhododendron species supports previously recognized infrageneric relationship.

Detection of Pathogenic Yersinia enterocolitica Strains by a Rapid and Specific Multiplex PCR Assay

  • Kim Young-Sam;Kim Jong-Bae;Eom Yong-Bin
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.333-339
    • /
    • 2004
  • A multiplex PCR assay targeting the yst and 16S rRNA genes of Yersinia enterocolitica was developed to specifically identify pathogenic Y. enterocolitica from pure culture. Simultaneous amplification of 145 and 416 bp fragments of the yst and 16S rRNA genes of Y. enterocolitica was obtained using the primer pairs in a single reaction. Validation of the assay was performed with the reference Yersinia strains and other members of the family Enterobacteriaceae. The defined primer pairs amplified the targeted sequence from only pathogenic Y. enterocolitica strains, whereas none of the other bacterial species yielded any amplified fragments. Within an assay time of 4 h, this assay offers a very specific, reliable, and inexpensive alternative to the conventional phenotypic assays used in clinical laboratories to identify pathogenic Y. enterocolitica.

  • PDF

Complete genome sequence of biofilm-producing strain Staphylococcus xylosus S170 (생물막 생성 Staphylococcus xylosus S170 균주의 유전체 분석연구)

  • Hong, Jisoo;Roh, Eunjung
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.167-168
    • /
    • 2018
  • Here we report the complete genome sequence of Staphylococcus xylosus S170, strong biofilm-producing strain, which comprised a single circular 2,910,005 bp chromosome and 32.97% G + C content. The genome included 2,674 protein-coding sequences, 22 rRNA genes, and 57 tRNA genes. Gene analysis of S. xylosus S170 could contribute to better understanding of biofilm-forming mechanisms.

Phylogenetic Analysis of Phyllospadix iwatensis Based on Nucleotide Sequences Encoding 18S rRNA and ITS-1

  • Kim, Jong-Myoung;Choi, Chang-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.272-277
    • /
    • 2010
  • Seagrasses are marine angiosperms of ecological importance in providing shelter and food to aquatic species as well as maintaining the carbon cycle on earth. Phyllospadix iwatensis is a seagrass of the family Zosteraceae and is distributed along the eastern coast of Korea. The nucleotide sequences of P. iwatensis nuclear genes encoding 18S ribosomal RNA (rRNA) and internal transcribed spacer-1 (ITS-1) were determined for molecular phylogenetic analysis. Genomic DNA was isolated from P. iwatensis and used for PCR amplification of 18S rRNA and ITS-1. Examination of the 18S rRNA sequence of P. iwatensis showed a close (99% similarity) relationship to Zostera noltii, another genus of Zosteraceae, but a distant (84% similarity) evolutionary relationship to other macroalgal Laminariales species. Further discrepancies found in ITS-1 nucleotide sequences between closely related species indicate that the sequence information could be used for species identification.

Selection of Reliable Reference Genes for Real-time qRT-PCR Analysis of Zi Geese (Anser anser domestica) Gene Expression

  • Ji, Hong;Wang, Jianfa;Liu, Juxiong;Guo, Jingru;Wang, Zhongwei;Zhang, Xu;Guo, Li;Yang, Huanmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.423-432
    • /
    • 2013
  • Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg production. However, we still don't know what reference genes in geese, which show stable expression, should be used for such quantitative analysis. In order to reveal such reference genes, the stability of seven genes were tested in five tissues of Zi geese. Methodology/Principal Findings: The relative transcription levels of genes encoding hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1), ${\beta}$-actin (ACTB), ${\beta}$-tubulin (TUB), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), succinate dehydrogenase flavoprotein (SDH), 28S rRNA (28S) and 18S rRNA (18S) have been quantified in heart, liver, kidney, muscle and ovary in Zi geese respectively at different developmental stages (1 d, 2, 4, 6 and 8 months). The expression stability of these genes was analyzed using geNorm, NormFinder and BestKeeper software. Conclusions: The expression of 28S in heart, GAPDH in liver and ovary, ACTB in kidney and HPRT1 in muscle are the most stable genes as identified by the three different analysis methods. Thus, these genes are recommended for use as candidate reference genes to compare mRNA transcription in various developmental stages of geese.

Detection of 23S rRNA Mutation Associated with Clarithromycin Resistance in Children with Helicobacter pylori Infection (소아 Helicobacter pylori 감염에서 Clarithromycin 내성과 연관된 23S rRNA의 돌연변이)

  • Ko, Jae Sung;Yang, Hye Ran;Seo, Jeong Kee
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.7 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • Purpose: The resistance of H. pylori to clarithromycin is one of the major causes of eradication failure. In H. pylori, clarithromycin resistance is due to point mutation in 23S rRNA. The aims of this study were to investigate the mutation of 23S rRNA and to examine the association of cagA, vacA genotype and clarithromycin resistant genes. Methods: H. pylori DNA was extracted from antral biopsy specimens from 27 children with H. pylori infection. Specific polymerase chain reaction (PCR) assays were used for cagA and vacA. Mutations associated with clarithromycin resistance were detected by using PCR restriction fragment length polymorphism (RFLP) analysis of 23S rRNA gene. Results: A2143G mutation was detected in one case and A2144G in 4, indicating 18.5% were clarithromycin resistant. Among the total of 27, cagA was present in 25 (93%), vacA s1a/m1 in 6 (22%), s1a/m2 in 3 (11%), s1c/m1 in 16 (59%), and s1c/m2 in 1 (4%). All of the 5 clarithromycin resistant strains were cagA (+), among which 2 were s1a/m1 and 2 were s1c/m1. There was no relation between genotypes and clarithromycin resistant genes. Conclusion: Detection of H. pylori resistance to clarithromycin using PCR RFLP from biopsy specimens might be useful for the selection of antibiotics. Clarithromycin resistant genes are not associated with genotypes of cagA and vacA.

  • PDF

First complete mitogenome sequence of Korean Gloydius ussuriensis (Viperidae: Crotalinae)

  • Hye Sook Jeon;Min Seock Do;Jung A Kim;Yoonjee Hong;Chae Eun Lim;Jae-Hwa Suh;Junghwa An
    • Journal of Species Research
    • /
    • v.13 no.2
    • /
    • pp.127-130
    • /
    • 2024
  • The first complete mitogenome sequence of the Red-tongue Pit Viper (Gloydius ussuriensis) from Korea was characterized using next-generation sequencing. The mitogenome is a circular molecule (17,209 bp) with a typical vertebrate mitogenome arrangement, which consists of 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), two non-coding regions (D-loop), and 13 protein-coding genes (PCGs). The base composition of the mitogenome is 32.7% of A, 27.5% of C, 13.9% of G, and 25.9% of T, with a slight AT bias(58.6%). This phylogenetic analysis infers that G. ussuriensis is in the same group as the Chinese G. ussuriensis (Accession No. KP262412) and is closely related to G. blomhoffi and other species of the genus Gloydius. In our study, the complete mitogenome sequence of Korean G. ussuriensis was characterized and we provided basic genetic information on this species.

Complete genome sequence of Neisseria sp. KEM232 isolated from a human smooth surface caries (사람 평활면 치아우식에서 분리한 Neisseria sp. KEM232 균주의 유전체 서열 분석)

  • Kim, Eun Mi;Seong, Chi Nam
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.81-83
    • /
    • 2018
  • We sequenced the genome of the Neisseria sp. KEM232 isolated from the smooth surface caries of human cavity of a 7-year old male in Republic of Korea by using the standard dilution plating technique. The genome comprises a single circular 2,371,912 bp chromosome with a G + C content of 58.5%, 2,210 protein-coding genes, 108 pseudo genes, 51 RNA genes, and one CRISPR array. Based on the 16S rRNA gene sequence similarity and average nucleotide identity, the strain KEM232 is most closely related to Neisseria baciliformis.