• Title/Summary/Keyword: rRNA gene

Search Result 1,905, Processing Time 0.03 seconds

Genetic Phylogeny among Three Species Red Seabream, Black Seabream and Rock Bream Based on Mitochondrial DNA Sequences

  • Kim, Mi-Jung;An, Hye-Suck;Kim, Kyung-Kil;Park, Jung-Youn
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.171-178
    • /
    • 2009
  • The Perciformes include approximately 40% of all bony fishes and are the largest order of vertebrates. This order includes some of the most economically relevant marine fishes, particularly the red seabream, black seabream and rock bream. A 409 bp fragment of the cytochrome b (cyt b) gene and 403 bp and 518 bp fragments of ribosomal RNA (12S and 16S rRNA, respectively) were sequenced from five populations of natural and cultured red seabreams, natural black seabream, and natural and cultured rock breams. The mitochondrial DNA sequences were utilized for the genetic identification and population structural analyses of these three species. Phylogenetic relationships of intra- and inter-species were elucidated using three types of molecular genetic markers from three species of the order Perciformes in Korea. We noted no significant differences in the intra-specific variation of the cyt b and rRNA genes in each population however, inter-specific divergences were greater than intra-specific variation. Inter-specific variation was induced more by transition than transversion type in the cyt b and rRNA genes. The cyt b gene and rRNA genes make it possible to determine the inter-species divergence. The rRNA genes have more conserved sequences than the cyt b gene. Therefore, these genes are expected to prove useful among species belonging to the different genera or families.

Selective Detection of Campylobacter jejuni, C. coli, Arcobacter butzleri and Helicobacter pylori by Polymerase Chain Reaction (Campylobacter jejuni, C. coli, Arcobacter butzleri와 Helicobacter pylori의 PCR에 의한 분리검출)

  • Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1134-1139
    • /
    • 2002
  • Campylobacter, Arcobacter, and Helicobacter, classified into the same rRNA superfamily VI by taxonomy, cause food-borne diseases, stomach ulcer, and gastric cancer. To detect each strain selectively from contaminated foods, PCR, multiplex-PCR, and restricion fragment length polymorphism (RFLP) were applied on Campylobacter, Arcobacter, and Helicobacter. The same PCR products could be detected using CHA primer targeted for 16S rRNA of Campylobacter, Arcobacter, and Helicobacter. To detect C. jejuni and C. coli from A. butzleri and H. pylori, pg50/pg3 primer targeted for fla A gene was used, and for A. butzleri, Arco2/Butz primer targeted for 23S rRNA was utilized. For H. pylori detection, icd1/icd2 primer targeted for isocitrate dehydrogenase gene was employed, and JEJ1/JEJ2 primer targeted for ceuE gene was effective for C. jejuni detection from the three strains. C. jejuni, C. coli could be separated from A. butzleri and H. pylori through PCR-RFLP using restriction enzyme Dde I. Such primers would be effective for detecting each strain selectively through PCR when C. jejuni, C. coli, A butzleri and H. pylori are contaminated together.

Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI;KIM JONG-MYUNG;YEOM JI-HYUN;KIM HYUN-LI;GO HA-YOUNG;SHIN EUN-KYOUNG;LEE KANGSEOK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1100-1105
    • /
    • 2005
  • Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.

The Essential Function of miR-5739 in Embryonic Muscle Development

  • Ji-Heon Lee;Min Sup Kim;Jin-seop Lee;Dong Hyun Lee;Chansol Park;Dong Hyuk Lee;Eun-Young Kim;Hyung Min Chung
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.145-155
    • /
    • 2023
  • Background and Objectives: Embryologically, mesodermal development is closely related to the development of various organs such as muscles, blood vessels, and hearts, which are the main organs that make up the body. However, treatment for mesoderm developmental disorders caused by congenital or acquired factors has so far relied on surgery and drug treatment for symptom relief, and more fundamentally, treatment for mesoderm developmental disorders is needed. Methods and Results: In our study, microRNA (miRNA), which plays an important role in the mesoderm development process, was identified and the developmental function was evaluated. miRNAs consist of small nucleotides, which act as transcription factors that bind to the 3' untranslated region and suppressed target gene expression. We constructed the human embryonic stem cell (hESC) knockout cell line and analyzed the function and characteristics of miR-5739, which plays an important role in mesoderm lineage. miR-5739 acts as a transcription factor targeting SMA, Brachyury T, Hand1, which controls muscle proliferation and differentiation, and KDR gene, which regulates vessel formation in vitro. In vivo results suggest a role in regulating muscle proliferation and differentiation. Gene ontology analysis confirmed that the miR-5739 is closely related to genes that regulate muscle and vessel proliferation and differentiation. Importantly, abnormal expression of miR-5739 was detected in somatic cells derived from patients with congenital muscle disease. Conclusions: Our study demonstrate that miR-5739 gene function significantly affects transcriptional circuits that regulate muscle and vascular differentiation during embryonic development.

New Records of Two Arcuospathidium Subspecies (Ciliophora: Haptoria: Arcuospathidiidae) from Korea

  • Jang, Seok Won;Nam, Seung Won;Shazib, Shahed Uddin Ahmed;Shin, Mann Kyoon
    • Animal Systematics, Evolution and Diversity
    • /
    • v.38 no.4
    • /
    • pp.226-237
    • /
    • 2022
  • Arcuospathidium is a haptorian ciliate genus composed of 18 species, and only one species has been reported in Korea. Here, we identify two unrecorded Arcuospathidium subspecies by morphological observation of both living and protargol-impregnated specimens with the small subunit ribosomal RNA (18S rRNA) gene sequence. These subspecies, Arcuospathidium cultriforme cultriforme (Penard, 1922) Foissner, 1984 and A. cultriforme scalpriforme (Kahl, 1930) Foissner, 2003, were isolated from various terrestrial habitats in July and August 2013, respectivley. Arcuospathidium cultriforme cultriforme is similar to A. cultriforme scalpriforme by a knife-shaped body, a twisted-shaped macronucleus, number of dorsal brushes, position of dorsal brushes, and shape of macronucleus but former mainly differs from the body length to oral bulge length ratio (27-38% vs. 41-53%), extrusome (one types vs. three types), cyst shape (roughly faceted wall vs. smooth surface and thin wall) and number of somatic kinety rows(18-30 vs. 30-44). Additionally, we analyzed the 18S rRNA gene sequences of two A. cultriforme subspecies and compared them with the sequences from GenBank to confirm their identification at the molecular level. As the results of genetic analysis, the 18S rRNA gene sequence of the Korean A. cultriforme cultriforme population is most similar to that of Austrian population. Also, the sequence of the Korean A. cultriforme scalpriforme population is most similar to that of another population with some nucleotide differences.

Selection of Stable Reference Genes for Real-Time Quantitative PCR Analysis in Edwardsiella tarda

  • Sun, Zhongyang;Deng, Jia;Wu, Haizhen;Wang, Qiyao;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.112-121
    • /
    • 2017
  • Edwardsiella tarda is a gram-negative pathogenic bacterium in aquaculture that can cause hemorrhagic septicemia in fish. Many secreted proteins have already been identified as virulent factors of E. tarda. Moreover, since virulent phenotypes are based on the expression regulation of virulent genes, understanding the expression profile of virulent genes is important. A quantitative RT-PCR is one of the preferred methods for determining different gene expressions. However, this requires the selection of a stable reference gene in E. tarda, which has not yet been systematically studied. Accordingly, this study evaluated nine candidate reference genes (recA, uup, rpoB, rho, topA, gyrA, groEL, rpoD, and 16S rRNA) using the Excel-based programs BestKeeper, GeNorm, and NormFinder under different culture conditions. The results showed that 16S rRNA was more stable than the other genes at different culture growth phases. However, at the same culture time, topA was identified as the reference gene under the conditions of different strains, different culture media, and infection, whereas gyrA was identified under the condition of different temperatures. Thus, in experiments, the expression of gapA and fbaA in E. tarda was analyzed by RT-qPCR using 16S rRNA, recA, and uup as the reference genes. The results showed that 16S rRNA was the most suitable reference gene in this analysis, and that using unsuitable reference genes resulted in inaccurate results.

SUMO pathway is required for ribosome biogenesis

  • Hong-Yeoul, Ryu
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.535-540
    • /
    • 2022
  • Ribosomes, acting as the cellular factories for protein production, are essential for all living organisms. Ribosomes are composed of both proteins and RNAs and are established through the coordination of several steps, including transcription, maturation of ribosomal RNA (rRNA), and assembly of ribosomal proteins. In particular, diverse factors required for ribosome biogenesis, such as transcription factors, small nucleolar RNA (snoRNA)-associated proteins, and assembly factors, are tightly regulated by various post-translational modifications. Among these modifications, small ubiquitin-related modifier (SUMO) targets lots of proteins required for gene expression of ribosomal proteins, rRNA, and snoRNAs, rRNA processing, and ribosome assembly. The tight control of SUMOylation affects functions and locations of substrates. This review summarizes current studies and recent progress of SUMOylation-mediated regulation of ribosome biogenesis.

Eight unrecorded bacterial species isolated from soil and marine sediment in Korea

  • Kim, Minji;Lee, Ki-Eun;Cha, In-Tae;Lee, Byoung-Hee;Park, Soo-Je
    • Journal of Species Research
    • /
    • v.9 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • The Earth contains billions of microbial species, although the vast majority cannot be cultured in laboratories and are thus considered unidentified and uncharacterized. Extremophiles are microorganisms that thrive in extreme conditions, including temperature, salinity, and pH. Extremophilic microorganisms have provided important insights for biological, metabolic, and evolutionary studies. Between 2017 and 2019, as part of a comprehensive investigation to identify bacterial species in Korea, eight bacterial strains were isolated from marine and non-marine environments in Jeju Island. These strains were cultured under extreme salinity or pH conditions. Phylogenetic analysis using 16S ribosomal RNA(rRNA) gene sequencing indicated that all eight strains belonged to the phyla Gammaproteobacteria, Bacilli, and Alphaproteobacteria. Based on their high 16S rRNA gene sequence similarities(>98.7%) and the formation of strong monophyletic clades with their closest related species, all isolated strains were considered as an unrecorded strain, previously unidentified species. Gram stain reaction, culture conditions, colony and cell morphology, biochemical characteristics, isolation source, and National Institute of Biological Resources(NIBR) IDs are described in this article. The characterization of these unrecorded strains provides information on microorganisms living in Korea.

Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

  • Cardenas, Erick;Cole, James R.;Tiedje, James M.;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.

Discrepancies in genetic identification of fish-derived Aeromonas strains

  • Han, Hyun-Ja;Kim, Do-Hyung
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.391-400
    • /
    • 2009
  • Genetic identification of 17 fish-derived Aeromonas strains was attempted using 5 housekeeping genes. 16S rRNA, gyrB, rpoD, dnaJ and recA genes from the 17 strains were amplified, and total of 85 amplicons were sequenced. DNA sequences of the strains and type strains of the 17 Aeromonas homology groups were used for genetic identification and phylogenetic analyses. None of the strains was identified as a single species using the 16S rRNA gene, showing the same identities (average = 99.7%) with several Aeromonas species. According to gyrB, rpoD, dnaJ, and recA, 9 strains and RFAS-1 used in this study were identified as A. hydrophila and A. salmonicida, respectively. However, the other strains were closely related to 2 or more Aeromonas species (i.e., A. salmonicida, A. veronii, A. jandaei, A. media and A. troda) depending on the genetic marker used. In this study, gyrB, rpoD, dnaJ and recA gene sequences proved to be advantageous over 16S rRNA for the identification of field Aeromonas isolates obtained from fish. However, there are discrepancies between analyses of different phylogenetic markers, indicating there are still difficulties in genetic identification of the genus Aeromonas using the housekeeping genes used in this study. Advantages and disadvantages of each housekeeping gene should be taken into account when the gene is used for identification of Aeromonas species.