Predictive modeling was applied to study the growth of microorganisms related to spoilage in frankfurter sausage containing various levels of dietary fiber (0, 1, 2, and 3%) from rice bran and to estimate its shelf-life. Using the Baranyi model, total viable cells, anaerobic and psychrotrophic bacteria were measured during 35 days of cold storage ($<4{\pm}1^{\circ}C$). The lag times (LT) demonstrated by control and treatment groups were 6.28, 623, 6.24, and 6.25 days, respectively. The growth rate of total viable cells in each group were 0.95, 0.91, 0.92, and 0.91 (Log CFU/g/day), respectively. The anaerobic and psychrotrophic bacteria had lower initial ($y_0$) and maximal bacterial counts ($y_{max}$) than total viable cells. Also, the anaerobic and psychrotrophic bacteria possessed lower growth rate and longer lag time than total viable cells. The estimated shelf-life of frankfurter containing rice bran fiber by the growth rate of total viable cells was 7.8, 7.9, 7.9, and 7.7 days, respectively. There were no significant differences in shelf-life as a function of fiber content. In other words, the addition of dietary fiber in sausage did not show the critically hazardous results in growth of microorganism. The 12 predictive models were then characterized by high $R^2$, and small RMSE. Furthermore, $B_f$ and $A_f$ values showed a very close relationship between the predictive and observed data.
Al Zahra, Windi;van Middelaar, Corina E.;de Boer, Imke J.M;Oosting, Simon J.
Asian-Australasian Journal of Animal Sciences
/
v.33
no.12
/
pp.2039-2049
/
2020
Objective: This study was conducted to provide models to accurately predict nitrogen (N) and phosphorus (P) excretion of dairy cows on smallholder farms in Indonesia based on readily available farm data. Methods: The generic model in this study is based on the principles of the Lucas equation, describing the relation between dry matter intake (DMI) and faecal N excretion to predict the quantity of faecal N (QFN). Excretion of urinary N and faecal P were calculated based on National Research Council recommendations for dairy cows. A farm survey was conducted to collect input parameters for the models. The data set was used to calibrate the model to predict QFN for the specific case. The model was validated by comparing the predicted quantity of faecal N with the actual quantity of faecal N (QFNACT) based on measurements, and the calibrated model was compared to the Lucas equation. The models were used to predict N and P excretion of all 144 dairy cows in the data set. Results: Our estimate of true N digestibility equalled the standard value of 92% in the original Lucas equation, whereas our estimate of metabolic faecal N was -0.60 g/100 g DMI, with the standard value being -0.61 g/100 g DMI. Results of the model validation showed that the R2 was 0.63, the MAE was 15 g/animal/d (17% from QFNACT), and the RMSE was 20 g/animal/d (22% from QFNACT). We predicted that the total N excretion of dairy cows in Indonesia was on average 197 g/animal/d, whereas P excretion was on average 56 g/animal/d. Conclusion: The proposed models can be used with reasonable accuracy to predict N and P excretion of dairy cattle on smallholder farms in Indonesia, which can contribute to improving manure management and reduce environmental issues related to nutrient losses.
Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.
Recently, various Best Management Practices (BMPs) have been applied at a field to reduce soil erosion. Hourly Runoff and Sediment Model for Best Management Practices (HRSM4BMP) model could be used to evaluate soil erosion reduction for various agricultural BMPs at fields. Runoff and sediment yield from source areas have to be predicted with greater accuracies to evaluate sediment reduction efficiently with BMPs. To achieve this, the best parameters related with runoff and sediment modules of the HRSM4BMP model should be identified with proper calibration processes. Although manual calibration is often utilized in calibrating runoff and sediment using the HRSM4BMP, objective calibration method would be recommended. The purpose of the study was to develop an automatic calibration tool of the HRSM4BMP model with PARASOL method. This automatic calibration tool was applied to Bangdongri, Chuncheon-si to evaluate its calibration performance. The $R^2$, NSE and RMSE value for runoff estimation were 0.92, 0.92, $0.3m^3$, and for sediment yield estimation were 0.94, 0.94, 0.0027 kg. As shown in this result, automatic calibration tool of HRSM4BMP model would be used to determine the best parameters and can be used to simulate runoff and sediment yield with acceptable accuracies.
Hur, Jina;Park, Joo Hyeon;Shim, Kyo Moon;Kim, Yong Seok;Jo, Sera
Korean Journal of Agricultural and Forest Meteorology
/
v.22
no.3
/
pp.128-134
/
2020
The daily gridded meteorological information and climatology with high resolution (30m and 270m) was produced from 94 Automated Surface Observing System (ASOS) of Korea Meteorological Administration (KMA) for the past 50 years (1971-current) by different downscaling methods. In addition, the difference between daily meteorological data and the mean state of past 30 years (1981-2010) was calculated for the analysis of climate change. These datasets with GeoTiff format are available from the web interface (https://agecoclim. agmet.kr). The performance of the data is evaluated using 172 Automatic Weather S tation (AWS ) of Rural Development of Administration (RDA). The data have biases lower than 2.0, and root mean square errors (RMSE) lower than 3.8. This data may help to better understand the regional climatic change and its impact on agroecosystem in S outh Korea.
We applied multilayer perceptron (MLP) and radial basis function (RBF) neural network in upstream and downstream water quality stations of the Karaj Reservoir in Iran. For both neural networks, inputs were pH, turbidity, temperature, chlorophyll-a, biochemical oxygen demand (BOD) and nitrate, and the output was dissolved oxygen (DO). We used an MLP neural network with two hidden layers, for upstream station 15 and 33 neurons in the first and second layers respectively, and for the downstream station, 16 and 21 neurons in the first and second hidden layer were used which had minimum amount of errors. For learning process 6-fold cross validation were applied to avoid over fitting. The best results acquired from RBF model, in which the mean bias error (MBE) and root mean squared error (RMSE) were 0.063 and 0.10 for the upstream station. The MBE and RSME were 0.0126 and 0.099 for the downstream station. The coefficient of determination ($R^2$) between the observed data and the predicted data for upstream and downstream stations in the MLP was 0.801 and 0.904, respectively, and in the RBF network were 0.962 and 0.97, respectively. The MLP neural network had acceptable results; however, the results of RBF network were more accurate. A sensitivity analysis for the MLP neural network indicated that temperature was the first parameter, pH the second and nitrate was the last factor affecting the prediction of DO concentrations. The results proved the workability and accuracy of the RBF model in the prediction of the DO.
Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
Korean Journal of Soil Science and Fertilizer
/
v.50
no.5
/
pp.336-344
/
2017
The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.
Yoon, Yeon Ah;Jung, Jin Hyeong;Lim, Jun Hyoung;Chang, Tai-Woo;Kim, Yong Soo
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.2
/
pp.48-55
/
2020
Recently, a study of prognosis and health management (PHM) was conducted to diagnose failure and predict the life of air craft engine parts using sensor data. PHM is a framework that provides individualized solutions for managing system health. This study predicted the remaining useful life (RUL) of aeroengine using degradation data collected by sensors provided by the IEEE 2008 PHM Conference Challenge. There are 218 engine sensor data that has initial wear and production deviations. It was difficult to determine the characteristics of the engine parts since the system and domain-specific information was not provided. Each engine has a different cycle, making it difficult to use time series models. Therefore, this analysis was performed using machine learning algorithms rather than statistical time series models. The machine learning algorithms used were a random forest, gradient boost tree analysis and XG boost. A sliding window was applied to develop RUL predictions. We compared model performance before and after applying the sliding window, and proposed a data preprocessing method to develop RUL predictions. The model was evaluated by R-square scores and root mean squares error (RMSE). It was shown that the XG boost model of the random split method using the sliding window preprocessing approach has the best predictive performance.
Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
Journal of the Korean Solar Energy Society
/
v.39
no.6
/
pp.113-125
/
2019
With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.
농업과 환경분야에서 토양 상태를 신속하고 주기적으로 모니터링하는 것에 대한 관심이 높아지고 있다. 토양의 특성을 측정하는 기존의 화학분석 방식은 분석의 정밀도, 시료의 수, 분석항목 등에 따라 시간, 인력, 비용적 소모가 커진다. 최근에는 식품, 농업, 환경 분야에서 신속하고 비파괴적 분석 방법으로 가시 근적외선 분광학을 도입하고 있다. 가시 근적외선 영역(VNIR, 400-2400 nm)에는 다양한 물질의 고유한 흡수분광형태가 존재한다는 이론적 토대로부터 물질의 정성 정량적 분석이 가능하다고 알려져 있다. 본 연구에서는 VNIR 분광 스펙트럼으로부터 Al, organic carbon (OC), clay, silt, sand, CEC (Cation exchange capacity), CEC/clay 등의 토양 특성을 정량하고자 하였다. 농경지에서 채취한 94개 토양시료를 기존의 화학분석 방법으로 분석하고 실내에서 VNIR 스펙트럼을 측정하였다. 스펙트럼은 원시형태와, 1차, 2차 도함수로 변환된 형태 모두 partial least square regression (PLSR) 모델에 적용하였다. PLSR에 의한 토양특성 추정식은 RMSE, $R^2$, SDE, RPD 값을 이용하여 검증하였다. Al, OC, silt, sand 함량에 대해서는 통계적으로 유의한 수준의 추정값을 산출하였고, clay와 CEC/clay에 대해 추정한 값은 실측값과 약한 상관성을 나타내었다. 이러한 분광학적인 추정 기법은 영상을 이용한 정성 정량분석에 활용될 수 있을 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.