• Title/Summary/Keyword: rRMSE

Search Result 525, Processing Time 0.022 seconds

Shelf-life Estimation of Frankfurter Sausage Containing Dietary Fiber from Rice Bran Using Predictive Modeling (예측미생물을 이용한 미강식이섬유 함유 프랑크푸르터 소시지의 유통기한 설정)

  • Heo, Chan;Kim, Hyoun-Wook;Choi, Yun-Sang;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • Predictive modeling was applied to study the growth of microorganisms related to spoilage in frankfurter sausage containing various levels of dietary fiber (0, 1, 2, and 3%) from rice bran and to estimate its shelf-life. Using the Baranyi model, total viable cells, anaerobic and psychrotrophic bacteria were measured during 35 days of cold storage ($<4{\pm}1^{\circ}C$). The lag times (LT) demonstrated by control and treatment groups were 6.28, 623, 6.24, and 6.25 days, respectively. The growth rate of total viable cells in each group were 0.95, 0.91, 0.92, and 0.91 (Log CFU/g/day), respectively. The anaerobic and psychrotrophic bacteria had lower initial ($y_0$) and maximal bacterial counts ($y_{max}$) than total viable cells. Also, the anaerobic and psychrotrophic bacteria possessed lower growth rate and longer lag time than total viable cells. The estimated shelf-life of frankfurter containing rice bran fiber by the growth rate of total viable cells was 7.8, 7.9, 7.9, and 7.7 days, respectively. There were no significant differences in shelf-life as a function of fiber content. In other words, the addition of dietary fiber in sausage did not show the critically hazardous results in growth of microorganism. The 12 predictive models were then characterized by high $R^2$, and small RMSE. Furthermore, $B_f$ and $A_f$ values showed a very close relationship between the predictive and observed data.

Predicting nutrient excretion from dairy cows on smallholder farms in Indonesia using readily available farm data

  • Al Zahra, Windi;van Middelaar, Corina E.;de Boer, Imke J.M;Oosting, Simon J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2039-2049
    • /
    • 2020
  • Objective: This study was conducted to provide models to accurately predict nitrogen (N) and phosphorus (P) excretion of dairy cows on smallholder farms in Indonesia based on readily available farm data. Methods: The generic model in this study is based on the principles of the Lucas equation, describing the relation between dry matter intake (DMI) and faecal N excretion to predict the quantity of faecal N (QFN). Excretion of urinary N and faecal P were calculated based on National Research Council recommendations for dairy cows. A farm survey was conducted to collect input parameters for the models. The data set was used to calibrate the model to predict QFN for the specific case. The model was validated by comparing the predicted quantity of faecal N with the actual quantity of faecal N (QFNACT) based on measurements, and the calibrated model was compared to the Lucas equation. The models were used to predict N and P excretion of all 144 dairy cows in the data set. Results: Our estimate of true N digestibility equalled the standard value of 92% in the original Lucas equation, whereas our estimate of metabolic faecal N was -0.60 g/100 g DMI, with the standard value being -0.61 g/100 g DMI. Results of the model validation showed that the R2 was 0.63, the MAE was 15 g/animal/d (17% from QFNACT), and the RMSE was 20 g/animal/d (22% from QFNACT). We predicted that the total N excretion of dairy cows in Indonesia was on average 197 g/animal/d, whereas P excretion was on average 56 g/animal/d. Conclusion: The proposed models can be used with reasonable accuracy to predict N and P excretion of dairy cattle on smallholder farms in Indonesia, which can contribute to improving manure management and reduce environmental issues related to nutrient losses.

Novel adsorption model of filtration process in polycarbonate track-etched membrane: Comparative study

  • Adda, Asma;Hanini, Salah;Abbas, Mohamed;Sediri, Meriem
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.479-487
    • /
    • 2020
  • Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.

Development of Runoff and Sediment Auto-calibration Tool for HRSM4BMP Model (HRSM4BMP 모형 유출/유사 자동 보정 툴 개발)

  • Kum, Donghyuk;Ryu, Jichul;Choi, Jaewan;Kang, Hyunwoo;Jang, Chun Hwa;Shin, Dong Suk;Lee, Jae Kwan;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Recently, various Best Management Practices (BMPs) have been applied at a field to reduce soil erosion. Hourly Runoff and Sediment Model for Best Management Practices (HRSM4BMP) model could be used to evaluate soil erosion reduction for various agricultural BMPs at fields. Runoff and sediment yield from source areas have to be predicted with greater accuracies to evaluate sediment reduction efficiently with BMPs. To achieve this, the best parameters related with runoff and sediment modules of the HRSM4BMP model should be identified with proper calibration processes. Although manual calibration is often utilized in calibrating runoff and sediment using the HRSM4BMP, objective calibration method would be recommended. The purpose of the study was to develop an automatic calibration tool of the HRSM4BMP model with PARASOL method. This automatic calibration tool was applied to Bangdongri, Chuncheon-si to evaluate its calibration performance. The $R^2$, NSE and RMSE value for runoff estimation were 0.92, 0.92, $0.3m^3$, and for sediment yield estimation were 0.94, 0.94, 0.0027 kg. As shown in this result, automatic calibration tool of HRSM4BMP model would be used to determine the best parameters and can be used to simulate runoff and sediment yield with acceptable accuracies.

A High-Resolution Agro-Climatic Dataset for Assessment of Climate Change over South Korea (남한지역 기후변화량 평가를 위한 고해상도 농업기후 자료)

  • Hur, Jina;Park, Joo Hyeon;Shim, Kyo Moon;Kim, Yong Seok;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.128-134
    • /
    • 2020
  • The daily gridded meteorological information and climatology with high resolution (30m and 270m) was produced from 94 Automated Surface Observing System (ASOS) of Korea Meteorological Administration (KMA) for the past 50 years (1971-current) by different downscaling methods. In addition, the difference between daily meteorological data and the mean state of past 30 years (1981-2010) was calculated for the analysis of climate change. These datasets with GeoTiff format are available from the web interface (https://agecoclim. agmet.kr). The performance of the data is evaluated using 172 Automatic Weather S tation (AWS ) of Rural Development of Administration (RDA). The data have biases lower than 2.0, and root mean square errors (RMSE) lower than 3.8. This data may help to better understand the regional climatic change and its impact on agroecosystem in S outh Korea.

Modelling of dissolved oxygen (DO) in a reservoir using artificial neural networks: Amir Kabir Reservoir, Iran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Abaei, Mehrdad
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.153-167
    • /
    • 2016
  • We applied multilayer perceptron (MLP) and radial basis function (RBF) neural network in upstream and downstream water quality stations of the Karaj Reservoir in Iran. For both neural networks, inputs were pH, turbidity, temperature, chlorophyll-a, biochemical oxygen demand (BOD) and nitrate, and the output was dissolved oxygen (DO). We used an MLP neural network with two hidden layers, for upstream station 15 and 33 neurons in the first and second layers respectively, and for the downstream station, 16 and 21 neurons in the first and second hidden layer were used which had minimum amount of errors. For learning process 6-fold cross validation were applied to avoid over fitting. The best results acquired from RBF model, in which the mean bias error (MBE) and root mean squared error (RMSE) were 0.063 and 0.10 for the upstream station. The MBE and RSME were 0.0126 and 0.099 for the downstream station. The coefficient of determination ($R^2$) between the observed data and the predicted data for upstream and downstream stations in the MLP was 0.801 and 0.904, respectively, and in the RBF network were 0.962 and 0.97, respectively. The MLP neural network had acceptable results; however, the results of RBF network were more accurate. A sensitivity analysis for the MLP neural network indicated that temperature was the first parameter, pH the second and nitrate was the last factor affecting the prediction of DO concentrations. The results proved the workability and accuracy of the RBF model in the prediction of the DO.

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.

A study on Data Preprocessing for Developing Remaining Useful Life Predictions based on Stochastic Degradation Models Using Air Craft Engine Data (항공엔진 열화데이터 기반 잔여수명 예측력 향상을 위한 데이터 전처리 방법 연구)

  • Yoon, Yeon Ah;Jung, Jin Hyeong;Lim, Jun Hyoung;Chang, Tai-Woo;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2020
  • Recently, a study of prognosis and health management (PHM) was conducted to diagnose failure and predict the life of air craft engine parts using sensor data. PHM is a framework that provides individualized solutions for managing system health. This study predicted the remaining useful life (RUL) of aeroengine using degradation data collected by sensors provided by the IEEE 2008 PHM Conference Challenge. There are 218 engine sensor data that has initial wear and production deviations. It was difficult to determine the characteristics of the engine parts since the system and domain-specific information was not provided. Each engine has a different cycle, making it difficult to use time series models. Therefore, this analysis was performed using machine learning algorithms rather than statistical time series models. The machine learning algorithms used were a random forest, gradient boost tree analysis and XG boost. A sliding window was applied to develop RUL predictions. We compared model performance before and after applying the sliding window, and proposed a data preprocessing method to develop RUL predictions. The model was evaluated by R-square scores and root mean squares error (RMSE). It was shown that the XG boost model of the random split method using the sliding window preprocessing approach has the best predictive performance.

Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve (Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델)

  • Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

Quantification of Soil Properties using VNIR Spectroscopy (가시.근적외 분광 스펙트럼을 이용한 토양 특성 정량화)

  • Choe, Eun-Young;Hong, S.Young;Kim, Yi-Hyun;Song, Kwan-Cheol;Zhang, Yong-Seon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.121-125
    • /
    • 2009
  • 농업과 환경분야에서 토양 상태를 신속하고 주기적으로 모니터링하는 것에 대한 관심이 높아지고 있다. 토양의 특성을 측정하는 기존의 화학분석 방식은 분석의 정밀도, 시료의 수, 분석항목 등에 따라 시간, 인력, 비용적 소모가 커진다. 최근에는 식품, 농업, 환경 분야에서 신속하고 비파괴적 분석 방법으로 가시 근적외선 분광학을 도입하고 있다. 가시 근적외선 영역(VNIR, 400-2400 nm)에는 다양한 물질의 고유한 흡수분광형태가 존재한다는 이론적 토대로부터 물질의 정성 정량적 분석이 가능하다고 알려져 있다. 본 연구에서는 VNIR 분광 스펙트럼으로부터 Al, organic carbon (OC), clay, silt, sand, CEC (Cation exchange capacity), CEC/clay 등의 토양 특성을 정량하고자 하였다. 농경지에서 채취한 94개 토양시료를 기존의 화학분석 방법으로 분석하고 실내에서 VNIR 스펙트럼을 측정하였다. 스펙트럼은 원시형태와, 1차, 2차 도함수로 변환된 형태 모두 partial least square regression (PLSR) 모델에 적용하였다. PLSR에 의한 토양특성 추정식은 RMSE, $R^2$, SDE, RPD 값을 이용하여 검증하였다. Al, OC, silt, sand 함량에 대해서는 통계적으로 유의한 수준의 추정값을 산출하였고, clay와 CEC/clay에 대해 추정한 값은 실측값과 약한 상관성을 나타내었다. 이러한 분광학적인 추정 기법은 영상을 이용한 정성 정량분석에 활용될 수 있을 것으로 사료된다.

  • PDF