• 제목/요약/키워드: rRMSE

검색결과 525건 처리시간 0.024초

KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석 (Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image)

  • 윤예린;김태헌;오재홍;한유경
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.221-232
    • /
    • 2021
  • 본 연구는 KOMPSAT-3 및 KOMPSAT-3A호에서 전처리 단계에 따라 구분하여 제공하는 Level 1R 영상과 Level 1G 영상을 이용하여 기준영상의 기하품질에 따른 상호좌표등록 결과 분석을 수행하였다. 기준영상으로 Level 1R 영상 및 1G 영상 각각을 사용하고 대상영상은 Level 1R 영상을 사용하여 상호좌표등록을 수행하였다. 실험을 위해 대전지역에서 촬영된 KOMPSAT-3 및 3A호의 Level 1R, 1G 영상 총 7장을 이용하였다. 상호좌표등록을 수행하기 위해, 우선적으로 특징기반 정합기법인 SURF (Speeded-Up Robust Feature) 기법과 영역기반 정합기법인 위상상관 (Phase Correlation) 기법을 함께 이용한 반복적 정합기법을 통해 두 영상의 기하학적 위치를 개략적으로 일치시켜 주었다. 개략적으로 일치된 영상에서 SURF 기법을 이용하여 정합쌍을 추출하고 Affine 변환모델과 Piecewise Linear 변환모델을 각각 구성하여 상호좌표등록을 수행하였다. 실험결과, 기하오차가 보정된 Level 1G 영상을 기준영상으로 선정하였을 경우, Level 1R 영상을 이용하였을 때보다 상대적으로 많은 수의 정합쌍을 추출하였다. 또한, 기준영상이 Level 1G 영상일 때의 상호좌표등록 RMSE (Root Mean Square Error) 값이 평균 5화소 미만으로 Level 1R 영상을 이용하였을 때보다 더 낮은 것을 확인하였다. 이는 상호좌표등록 수행 시 두 위성영상 간의 초기위치관계가 상호좌표등록 결과에 영향을 끼칠 수 있음을 의미하며, 기준영상의 기하품질이 우수할수록 안정적인 상호좌표등록 정확도를 나타내는 것을 확인하였다.

정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측 (Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output)

  • 이주현;유철희;임정호;신예지;조동진
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1037-1051
    • /
    • 2020
  • 최근 기후변화로 인해 강도가 높은 태풍의 빈도가 높아짐에 따라 태풍 예측의 중요성이 강조되고 있는 데, 태풍경로예측에 비해 태풍강도예측에 대한 연구는 미비한 상황이다. 이에 본 연구에서는 딥러닝 모델인 Multi-task learning (MTL) 기법을 활용하여 정지궤도기상위성을 활용한 관측자료와 수치예보모델을 융합한 실시간 추정 및 6시간, 12시간 후의 태풍강도예측 모델을 제안하고자 한다. 본 연구에서는 2011년에서 2016년까지 북서태평양에서 발생한 총 142개의 태풍을 대상으로 강도 예측 연구를 시행하였다. 한국 최초의 기상위성인 Communication, Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI)를 활용하여 태풍의 관측영상을 추출하였고, National Center of Environmental Prediction (NCEP)에서 제공하는 Climate Forecast System version 2 (CFSv2)를 활용하여 6시간, 12시간 후의 태풍 주변 대기 및 해양 예측변수를 추출하였다. 본 연구에서는 각 입력자료의 활용성을 정량화 하기 위하여, 위성 기반 태풍관측영상만을 활용한 MTL 모델(Scheme 1)과 수치예보모델을 융합적으로 활용한 MTL 모델(Scheme 2)을 구축하고, 각 모델의 훈련 및 검증 성능을 정량적으로 비교하였다. 실시간 강도 추정의 결과 scheme 1과 scheme 2에서 비슷한 성능을 보이는 반면, 6시간, 12시간 후 태풍강도예측의 경우 scheme 2에서 각각 13%, 16% 개선된 결과를 보였다. 태풍 단계별 예측성능에 대한 분석을 시행한 결과, 저강도 태풍일수록 낮은 평균제곱근오차를 보인 반면, 대부분의 강도 단계에서 평균제곱근편차비는 30% 미만의 값을 보이며 유의미한 검증 결과를 보였다. 이에 본 연구에서 제시한 두가지 모델을 기반으로 2014년 발생한 태풍 HALONG의 시계열검증을 시행하였다. 그 결과, scheme 1의 경우 태풍 초기발달단계에서 태풍의 강도를 약 20 kts가량 과대 추정하는 경향을 보이는데, 환경예측자료를 융합한 scheme 2에서는 오차가 약 5 kts가량으로 과대 추정 경향이 줄어들었다. 본 연구에서 제시하는 현재, 6시간, 12시간 후 강도를 동시에 추출하는 MTL 모델은 Single-tasking model 대비 약 300%의 시간 효율을 보이며, 향후 신속한 태풍 예보 정보 추출에 큰 기여를 할 수 있을 것으로 기대된다.

생육모의에 의한 북한지방 시ㆍ군별 벼 재배기후 예비분석 (Agroclimatology of North Korea for Paddy Rice Cultivation: Preliminary Results from a Simulation Experiment)

  • 윤진일;이광회
    • 한국농림기상학회지
    • /
    • 제2권2호
    • /
    • pp.47-61
    • /
    • 2000
  • 북한 시ㆍ군별 벼 생육모의결과를 토대로 벼 재배 적합성 여부를 판정하였다. 생육모의에 필요한 시ㆍ군 별 일 기상자료는 지형기후학적 공간내삽기법을 근거로 한 3단계 과정을 통해 생산하였다. 우선 기온의 경우 51개 남북한 표준관측소의 14년간(1981~1994) 월평균값을 관측지점 위도, 해발고도, 해안거리, 경사도, 개방도 등 지리지형변수에 회귀시켜 얻은 통계모형(RMSE=0.4~1.6$^{\circ}C$)을 북한전역에 적용시켜 1 km$\times$1 km수평 격자점 단위로 월별 평균값을 추정하였다. 강수량의 경우 상대적으로 자료가 풍부한 남한의 지형-강수 관계를 도출하여 이를 북한지방에 적용한 윤 (2000)의 방법에 의해 월별 강수량 분포도를 작성하였다. 일사량의 경우 남한 19개 관측소의 14년간(1984~1997) 월 평균 수평면 전천일사량 관측값의 추정식([일사량, MJ m$^{-2}$ day$^{-1}$)=0.344+0.4756[대기외 일사량]+0.0299[남쪽 개방도]-1.307[운량]-0.01[상대습도], 결정계수 0.92, RMS error 0.95)에 의해 북한 지방 27개 지점의 일사량 자료를 복원하였다. 이를 거리역산가중법으로 공간내삽하여 북한전역의 월별 일사량 분포도를 작성하였다. 두 번째 단계에서는 얻어진 1 km$\times$1km 격자점 기후값을 183개 북한 시ㆍ군별로 공간평균값을 취했다. 마지막으로 시ㆍ군 단위 월별 기후값을 이용하여 통계적인 방법 (Pickering et al., 1994)에 의해 30년간의 일별 기상자료를 생성하였다. 북한의 대표적인 벼 품종 생육조사자료를 토대로 CERES-rice 모형의 유전적 모수를 조정하고, 준비된 기상자료를 입력시켜 183개 시ㆍ군별 벼의 생육을 30년치씩 모의하였다. 생육모의결과 중 성숙기와 수량 관련 특성을 점수화 하여 각 시ㆍ군의 벼 재배용 농업기후학적 잠재력을 정량적으로 표현하였다.

  • PDF

딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석 (Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm)

  • 허재원;이창희;서두천;오재홍;이창노;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.387-396
    • /
    • 2024
  • 대부분의 고해상도 위성영상은 rational polynomial coefficients (RPC) 정보를 제공하여 지상좌표와 영상좌표 간 변환을 수행한다. 그러나 초기 RPC에는 기하학적 오차가 존재하여 ground control points (GCPs)와의 정합을 통해 보정을 수행하여야 한다. GCP chip은 항공정사영상에서 추출한 높이 정보가 포함된 작은 영상 패치(patch)이다. 많은 선행연구에서는 영역 기반 정합 기법을 사용하여 고해상도 위성영상과 GCP chip 간 정합을 수행하였다. 계절적 차이나 변화된 지역이 존재하는 영상에서는 화소값에 의존하는 정합이 어렵기 때문에 윤곽 정보를 추출하여 정합을 수행하기도 한다. 그러나 일반적으로 사용하는 canny 기법으로 정합에 용이한 윤곽을 추출하기 위해서는 위성영상의 분광 특성에 적절한 임계치를 설정해주어야 하는 문제가 존재한다. 따라서 본 연구에서는 위성영상의 지역별 특성에 둔감한 윤곽 정보를 활용하여 RPC 보정을 위한 정합을 수행하고자 한다. 이를 위해 딥러닝 기반 윤곽 정보 추출 네트워크인 pixel difference network (PiDiNet)를 활용하여 위성영상과 GCP chip의 윤곽맵(edge map)을 각각 생성하였다. 그 후 생성된 윤곽맵을 normalized cross-correlation과 relative edge cross-correlation의 입력데이터로 대체하여 영역 기반의 정합을 수행하였다. 마지막으로 RPC 보정에 필요한 변환모델 계수를 도출하기 위하여 data snooping 기법을 반복적으로 적용하여 참정합쌍을 추출하였다. 오정합쌍을 제거한 참정합쌍에 대해 root mean square error (RMSE)를 도출하고 기존에 사용하던 상관관계 기법과 결과를 정성적으로 비교하였다. 실험 결과, PiDiNet은 약 0.3~0.9 화소의 RMSE 값 분포를 보였으나 canny 기법에 비해 두꺼운 윤곽을 나타내어 일부 영상에서 미세하게 정확도가 저하되는 것을 확인하였다. 그러나 위성영상 내 특징적인 윤곽을 일관적으로 나타냄으로써 정합이 어려운 지역에서도 정합이 잘 수행되는 것을 확인하였다. 본 연구를 통해 윤곽 기반 정합 기법의 강인성을 개선하여 다양한 지역에서의 정합을 수행할 수 있을 것으로 예상된다.

Estimating Moisture Content of Cucumber Seedling Using Hyperspectral Imagery

  • Kang, Jeong-Gyun;Ryu, Chan-Seok;Kim, Seong-Heon;Kang, Ye-Seong;Sarkar, Tapash Kumar;Kang, Dong-Hyeon;Kim, Dong Eok;Ku, Yang-Gyu
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.273-280
    • /
    • 2016
  • Purpose: This experiment was conducted to detect water stress in terms of the moisture content of cucumber seedlings under water stress condition using a hyperspectral image acquisition system, linear regression analysis, and partial least square regression (PLSR) to achieve a non-destructive measurement procedure. Methods: Changes in the reflectance spectrum of cucumber seedlings under water stress were measured using hyperspectral imaging techniques. A model for estimating moisture content of cucumber seedlings was constructed through a linear regression analysis that used the moisture content of cucumber seedlings and a normalized difference vegetation index (NDVI). A model using PLSR that used the moisture content of cucumber seedlings and reflectance spectrum was also created. Results: In the early stages of water stress, cucumber seedlings recovered completely when sub-irrigation was applied. However, the seedlings suffering from initial wilting did not recover when more than 42 h passed without irrigation. The reflectance spectrum of seedlings under water stress decreased gradually, but increased when irrigation was provided, except for the seedlings that had permanently wilted. From the results of the linear regression analysis using the NDVI, the model excluding wilted seedlings with less than 20% (n=97) moisture content showed a precision ($R^2$ and $R^2_{\alpha}$) of 0.573 and 0.568, respectively, and accuracy (RE) of 4.138% and 4.138%, which was higher than that for models including all seedlings (n=100). For PLS regression analysis using the reflectance spectrum, both models were found to have strong precision ($R^2$) with a rating of 0.822, but accuracy (RMSE and RE) was higher in the model excluding wilted seedlings as 5.544% and 13.65% respectively. Conclusions: The estimation model of the moisture content of cucumber seedlings showed better results in the PLSR analysis using reflectance spectrum than the linear regression analysis using NDVI.

베이지안 추정을 이용한 팔당호 유역의 계절별 클로로필a 예측 및 오염특성 연구 (A Study on Characteristics and Predictions of Seasonal Chlorophyll-a using Bayseian Regression in Paldang Watershed)

  • 김미아;신유나;김경현;허태영;유문규;이수웅
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.832-841
    • /
    • 2013
  • In recent years, eutrophication in the Paldang Lake has become one of the major environmental problems in Korea as it may threaten drinking water safety and human health. Thus it is important to understand the phenomena and predict the time and magnitude of algal blooms for applying adequate algal reduction measures. This study performed seasonal water quality assessment and chlorophyll-a prediction using Bayseian simple/multiple linear regression analysis. Bayseian regression analysis could be a useful tool to overcome limitations of conventional regression analysis. Also it can consider uncertainty in prediction by using posterior distribution. Generally, chlorophyll-a of a P2(Paldang Dam 2) site showed high concentration in spring and it was similar to that of P4(Paldang Dam 4) site. For the development of Bayseian model, we performed seasonal correlation. As a result, chlorophyll-a of a P2 site had a high correlation with P5(Paldang Dam 5) site in spring (r = 0.786, p<0.05) and with P4 in winter (r = 0.843, p<0.05). Based on the DIC (Deviance Information Criterion) value, critical explanatory variables of the best fitting Bayesian linear regression model were selected as a $PO_4-P$ (P2), Chlorophyll-a (P5) in spring, $NH_3-N$ (P2), Chlorophyll-a (P4), $NH_3-N$ (P4) in summer, DTP (P2), outflow (P2), TP (P3), TP (P4) fall, COD (P2), Chl-a (P4) and COD (P4) in winter. The results of chlorophyll-a prediction showed relatively high $R^2$ and low RMSE values in summer and winter.

Estimation of Suitable Methodology for Determining Weibull Parameters for the Vortex Shedding Analysis of Synovial Fluid

  • Singh, Nishant Kumar;Sarkar, A.;Deo, Anandita;Gautam, Kirti;Rai, S.K.
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권1호
    • /
    • pp.21-30
    • /
    • 2016
  • Weibull distribution with two parameters, shape (k) and scale (s) parameters are used to model the fatigue failure analysis due to periodic vortex shedding of the synovial fluid in knee joints. In order to determine the later parameter, a suitable statistical model is required for velocity distribution of synovial fluid flow. Hence, wide applicability of Weibull distribution in life testing and reliability analysis can be applied to describe the probability distribution of synovial fluid flow velocity. In this work, comparisons of three most widely used methods for estimating Weibull parameters are carried out; i.e. the least square estimation method (LSEM), maximum likelihood estimator (MLE) and the method of moment (MOM), to study fatigue failure of bone joint due to periodic vortex shedding of synovial fluid. The performances of these methods are compared through the analysis of computer generated synovial fluidflow velocity distribution in the physiological range. Significant values for the (k) and (s) parameters are obtained by comparing these methods. The criterions such as root mean square error (RMSE), coefficient of determination ($R^2$), maximum error between the cumulative distribution functions (CDFs) or Kolmogorov-Smirnov (K-S) and the chi square tests are used for the comparison of the suitability of these methods. The results show that maximum likelihood method performs well for most of the cases studied and hence recommended.

통합생산량분석법에 의한 한국 서해 어획대상 잠재생산량 추정 연구 (A study on the estimation of potential yield for Korean west coast fisheries using the holistic production method (HPM))

  • 김현아;서영일;차형기;강희중;장창익
    • 수산해양기술연구
    • /
    • 제54권1호
    • /
    • pp.38-53
    • /
    • 2018
  • The purpose of this study is to estimate potential yield (PY) for Korean west coast fisheries using the holistic production method (HPM). HPM involves the use of surplus production models to apply input data of catch and standardized fishing efforts. HPM compared the estimated parameters of the surplus production from four different models: the Fox model, CYP model, ASPIC model, and maximum entropy model. The PY estimates ranged from 174,232 metric tons (mt) using the CYP model to 238,088 mt using the maximum entropy model. The highest coefficient of determination ($R^2$), the lowest root mean square error (RMSE), and the lowest Theil's U statistic (U) for Korean west coast fisheries were obtained from the maximum entropy model. The maximum entropy model showed relatively better fits of data, indicating that the maximum entropy model is statistically more stable and accurate than other models. The estimate from the maximum entropy model is regarded as a more reasonable estimate of PY. The quality of input data should be improved for the future study of PY to obtain more reliable estimates.

The Effects of Age, Gender, and Target Force Level on Controlled Force Exertion Tasks

  • Kong, Yong-Ku;Lee, Sung Yong;Kim, Dae-Min;Choi, Kyeong-Hee
    • 대한인간공학회지
    • /
    • 제36권1호
    • /
    • pp.53-67
    • /
    • 2017
  • Objective: The purpose of this study is to build basic data to systematically develop a hand function evaluation tool by determining the effects of age, gender and target force level on the difference in hand function according to the target force level. Background: Precise and objective evaluation of hand functionality is a very important factor in quantifying treatment progress in patients or elderly people, and in verifying treatment effects. However, most hand function evaluations lack objectivity and accuracy, and therefore it is difficult to properly treat patients according to the given situation. Method: Sixteen healthy subjects (eight elderly and eight young people) participated in this study to evaluate the effects of age, gender, and target force level on tracking performance through rRMSE in terms of the tracking force and actual exerted force, by carrying out a task of maintaining six different target force levels for 20 seconds. Results: The result of this experiment indicated that elderly people and women had a lower ability to maintain a certain level of force than young people and men by 16% and 10%, respectively. The target force level results showed that the tracking error of the lowest force level (5% MVC) was significantly higher than that of 15% MVC, which in turn showed a higher tracking error than that of the higher target force levels. Conclusion: The results of this study can thus be utilized to develop a rehabilitation program for elderly people or other patients. Application: The authors expect that the results of the present study will be valuable to develop a rehabilitation program and hand function evaluation tool.

자율주행 콤바인을 위한 포장 자동 경로생성 및 추종 시뮬레이션 기초연구 (Preliminary Study on Automated Path Generation and Tracking Simulation for an Unmanned Combine Harvester)

  • 전찬우;김학진;한웅철;김정훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.20-20
    • /
    • 2017
  • 궤도형 차량의 이동구조는 에너지 소비 측면에서 단점이 있지만 접지압의 감소로 인한 평지 및 야지험지에서도 원활한 주행이 가능한 장점으로 인해 농업분야의 플랫폼에서 많이 사용된다. 곡식을 베는 일과 탈곡하는 일을 한 번에 하는 콤바인도 이러한 무한궤도형 이동구조를 사용한다. 또한 궤도형 차량의 방향전환 및 주행속도 변환은 좌 우 궤도의 회전 속도를 다르게 하여 동시에 제어하기 때문에 정교한 주행 성능을 위해서는 궤도형 차량의 기구학 모델을 고려한 경로 계획이 필요하다. 본 연구에서는 직교형 포장에서 Round harvesting 기법 기반으로 궤도형 차량의 기구학 모델 및 포장정보를 고려한 자율주행 콤바인 경로계획 알고리즘을 개발하고자 하였다. 이를 위해 Labview 기반의 궤도형 차량 시뮬레이션을 구축하여 실제 포장정보를 이용해 생성 된 경로의 적용 가능성을 구명하고자 하였다. 자율주행 콤바인 경로 계획은 콤바인의 길이, 너비, 회전 시 좌 우 궤도의 속도 비, 직진 속도와 회전 속도 비, 회전 각도, 포장의 외부 경계선, 작업 겹침 량, 회경 횟수를 이용하여 좌현 새머리 선회를 포함한 내부 왕복작업 경로를 생성하며 외부 회경 횟수는 2~3회를 가정하였다. 자율주행 시뮬레이션은 차체와 궤도 자체의 미끄러짐과 작동기 지연시간을 단순화 한 궤도형 기구학 모델형태로 구성하였다. 추종 알고리즘은 선견 거리법을 사용하였으며, 측면 변이값과 방향 오차의 선형조합을 이용하여 조향변수를 정의하고 퍼지로직기반으로 좌 우 궤도 속도를 7 단계화하여 조향장치를 모델링하였다. 실험결과 개발 된 경로생성 알고리즘은 실제 취득 된 포장 외부 경계 GPS 위 경도를 이용해 자동으로 생성이 가능하며 간략화 된 콤바인 시뮬레이션에서 직진주행 RMS 위치 오차는 0.05 m, 선회구간에서 직진 구간 진입 시 RMS 위치 오차는 0.11 m, 직진 구간 RMSE 방향 오차는 3.2 deg로 콤바인 예취부 간격인 30 cm보다 작은 위치 오차를 보이며 생성된 경로 전체 추종이 가능함을 나타내었다.

  • PDF