• Title/Summary/Keyword: rRMSE

Search Result 515, Processing Time 0.025 seconds

Estimation of the Hapcheon Dam Inflow Using HSPF Model (HSPF 모형을 이용한 합천댐 유입량 추정)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.69-77
    • /
    • 2019
  • The objective of this study was to calibrate and validate the HSPF (Hydrological Simulation Program-Fortran) model for estimating the runoff of the Hapcheon dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input data for the HSPF model. Observed runoff data from 2000 to 2016 in study watershed were used for calibration and validation. Hydrologic parameters for runoff calibration were selected based on the user's manual and references, and trial and error method was used for parameter calibration. The $R^2$, RMSE (root-mean-square error), RMAE (relative mean absolute error), and NSE (Nash-Sutcliffe efficiency coefficient) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within ${\pm}4%$ error. The model performance criteria for calibration and validation showed that $R^2$ was in the rang of 0.78 to 0.83, RMSE was 2.55 to 2.76 mm/day, RMAE was 0.46 to 0.48 mm/day, and NSE was 0.81 to 0.82 for daily runoff. The amount of inflow to Hapcheon Dam was calculated from the calibrated HSPF model and the result was compared with observed inflow, which was -0.9% error. As a result of analyzing the relation between inflow and storage capacity, it was found that as the inflow increases, the storage increases, and when the inflow decreases, the storage also decreases. As a result of correlation between inflow and storage, $R^2$ of the measured inflow and storage was 0.67, and the simulated inflow and storage was 0.61.

Age Estimation with Panoramic Radiomorphometric Parameters Using Generalized Linear Models

  • Lee, Yeon-Hee;An, Jung-Sub
    • Journal of Oral Medicine and Pain
    • /
    • v.46 no.2
    • /
    • pp.21-32
    • /
    • 2021
  • Purpose: The purpose of the present study was to investigate the correlation between age and 34 radiomorphometric parameters on panoramic radiographs, and to provide generalized linear models (GLMs) as a non-invasive, inexpensive, and accurate method to the forensic judgement of living individual's age. Methods: The study included 417 digital panoramic radiographs of Korean individuals (178 males and 239 females, mean age: 32.57±17.81 years). Considering the skeletal differences between the sexes, GLMs were obtained separately according to sex, as well as across the total sample. For statistical analysis and to predict the accuracy of the new GLMs, root mean squared error (RMSE) and adjusted R-squared (R2) were calculated. Results: The adjusted R2-values of the developed GLMs in the total sample, and male and female groups were 0.623, 0.637, and 0.660, respectively (p<0.001), while the allowable RMSE values were 8.80, 8.42, and 8.53 years, respectively. In the GLM of the total sample, the most influential predictor of greater age was decreased pulp area in the #36 first molar (beta=-26.52; p<0.01), followed by the presence of periodontitis (beta=10.24; p<0.01). In males, the most influential factor was the presence of periodontitis (beta=9.20; p<0.05), followed by the number of full veneer crowns (beta=2.19; p<0.001). In females, the most influential predictor was the presence of periodontitis (beta=18.10; p<0.001), followed by the tooth area of the #16 first molar (beta=-11.57; p<0.001). Conclusions: We established acceptable GLM for each sex and found out the predictors necessary to age estimation which can be easily found in panoramic radiographs. Our study provides reference that parameters such as the area of tooth and pulp, the number of teeth treated, and the presence of periodontitis should be considered in estimating age.

Hybrid adaptive neuro fuzzy inference system for optimization mechanical behaviors of nanocomposite reinforced concrete

  • Huang, Yong;Wu, Shengbin
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.515-527
    • /
    • 2022
  • The application of fibers in concrete obviously enhances the properties of concrete, also the application of natural fibers in concrete is raising due to the availability, low cost and environmentally friendly. Besides, predicting the mechanical properties of concrete in general and shear strength in particular is highly significant in concrete mixture with fiber nanocomposite reinforced concrete (FRC) in construction projects. Despite numerous studies in shear strength, determining this strength still needs more investigations. In this research, Adaptive Neuro-Fuzzy Inference System (ANFIS) have been employed to determine the strength of reinforced concrete with fiber. 180 empirical data were gathered from reliable literature to develop the methods. Models were developed, validated and their statistical results were compared through the root mean squared error (RMSE), determination coefficient (R2), mean absolute error (MAE) and Pearson correlation coefficient (r). Comparing the RMSE of PSO (0.8859) and ANFIS (0.6047) have emphasized the significant role of structural parameters on the shear strength of concrete, also effective depth, web width, and a clear depth rate are essential parameters in modeling the shear capacity of FRC. Considering the accuracy of our models in determining the shear strength of FRC, the outcomes have shown that the R2 values of PSO (0.7487) was better than ANFIS (2.4048). Thus, in this research, PSO has demonstrated better performance than ANFIS in predicting the shear strength of FRC in case of accuracy and the least error ratio. Thus, PSO could be applied as a proper tool to maximum accuracy predict the shear strength of FRC.

The study of blood glucose level prediction using photoplethysmography and machine learning (PPG와 기계학습을 활용한 혈당수치 예측 연구)

  • Cheol-Gu, Park;Sang-Ki, Choi
    • Journal of Digital Policy
    • /
    • v.1 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • The paper is a study to develop and verify a blood glucose level prediction model based on biosignals obtained from photoplethysmography (PPG) sensors, ICT technology and data. Blood glucose prediction used the MLP architecture of machine learning. The input layer of the machine learning model consists of 10 input nodes and 5 hidden layers: heart rate, heart rate variability, age, gender, VLF, LF, HF, SDNN, RMSSD, and PNN50. The results of the predictive model are MSE=0.0724, MAE=1.1022 and RMSE=1.0285, and the coefficient of determination (R2) is 0.9985. A blood glucose prediction model using bio-signal data collected from digital devices and machine learning was established and verified. If research to standardize and increase accuracy of machine learning datasets for various digital devices continues, it could be an alternative method for individual blood glucose management.

A study on sensitivity of representativeness indicator in survey sampling (표본 추출법에서 R-지수의 민감도에 관한 연구)

  • Lee, Yujin;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.69-82
    • /
    • 2017
  • R-indicator (representativeness indicator) is used to check the representativeness of samples when non-responses occur. The representativeness is related with the accuracy of parameter estimator and the accuracy is related with bias of the estimator. Hence, unbiased estimator generates high accuracy. Therefore, high value of R-indicator guarantees the accuracy of parameter estimation with a small bias. R-indicator is calculated through propensity scores obtained by logit or probit modeling. In this paper we investigate the degree of relation between R-indicator and different non-response rates in strata using simulation studies. We also analyze a modified Korea Economic Census data for real data analysis.

Evaluation of TOF MR Angiography and Imaging for the Half Scan Factor of Cerebral Artery (유속신호증강효과의 자기공명혈관조영술을 이용한 뇌혈관검사에서 Half Scan Factor 적용한 영상 평가)

  • Choi, Young Jae;Kweon, Dae Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.92-98
    • /
    • 2016
  • To aim of this study was to assess the full scan and half scan of imaging with half scan factor. Patients without a cerebral vascular disease (n = 30) and were subject to the full scan half scan, and set a region of interest in the cerebral artery from the three regions (C1, C2, C3) in the range of 7 to 8 mm. MIP (maximum intensity projection) to reconstruct the images in signal strength SNR (signal to noise ration), PSNR (peak signal noise to ratio), RMSE (root mean square error), MAE (mean absolute error) and calculated by paired t-test for use by statistics were analyzed. Scan time was half scan (4 minutes 53 seconds), the full scan (6 minutes 04 seconds). The mean measurement range (7.21 mm) of all the ROI in the brain blood vessel, was the SNR of the first C1 is completely scanned (58.66 dB), half-scan (62.10 dB), a positive correlation ($r^2=0.503$), for the second C2 SNR is completely scanned (70.30 dB), half-scan (74.67 dB) the amount of correlation ($r^2=0.575$), third C3 of a complete scan SNR (70.33 dB), half scan SNR (74.64 dB) in the amount of correlation between the It was analyzed with ($r^2=0.523$). Comparative full scan with half of SNR ($4.75{\pm}0.26dB$), PSNR ($21.87{\pm}0.28dB$), RMSE ($48.88{\pm}1.61$), was calculated as MAE ($25.56{\pm}2.2$). SNR is also applied to examine the half-scans are not many differences in the quality of the two scan methods were not statistically significant in the scan (p-value > .05) image takes less time than a full scan was used.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

A Study on Analyzing the Validity between the Predicted and Measured Concentrations of VOCs in the Atmosphere Using the CalTOX Model (CalTOX 모델에 의한 휘발성유기화합물의 대기 중 예측 농도와 실측 농도간의 타당성 분석에 관한 연구)

  • Kim, Ok;Lee, Minwoo;Park, Sanghyun;Park, Changyoung;Song, Youngho;Kim, Byeongbin;Choi, Jinha;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.576-587
    • /
    • 2020
  • Objectives: This study calculated local residents exposures to VOCs (Volatile Organic Compounds) released into the atmosphere using the CalTOX model and carried out uncertainty analysis and sensitivity analysis. The model validity was analyzed by comparing the predicted and the actual atmospheric concentrations. Methods: Uncertainty was parsed by conducting a Monte Carlo simulation. Sensitivity was dissected with the regression (coefficients) method. The model validity was analyzed by applying r2 (coefficient of determination), RMSE (root mean square error), and the Nash-Sutcliffe EI (efficiency index) formula. Results: Among the concentrations in the atmosphere in this study, benzene was the highest and the lifetime average daily dose of benzene and the average daily dose of xylene were high. In terms of the sensitivity analysis outcome, the source term to air, exposure time, indoors resting (ETri), exposure time, outdoors at home (ETao), yearly average wind speed (v_w), contaminated area in ㎡ (Area), active breathing rate (BRa), resting breathing rate (BRr), exposure time, and active indoors (ETai) were elicited as input variables having great influence upon this model. In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. To supplement this value, the regression formula was derived for benzene with y=0.002+15.48x, ethylbenzene with y ≡ 0.001+57.240x, styrene with y=0.000+42.249x, toluene with y=0.004+91.588x, and xylene with y=0.000+0.007x. Conclusions: In consequence of inspecting the validity of the model, r2 appeared to be a value close to 1 and RMSE appeared to be a value close to 0, but EI indicated unacceptable model efficiency. This will be able to be used as base data for securing the accuracy and reliability of the model.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.