• Title/Summary/Keyword: rIL-18BP

Search Result 9, Processing Time 0.025 seconds

Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application

  • Soohyun Kim;Hyeon Yu;Tania Azam;Charles A. Dinarello
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2024
  • IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

Immune Stimulating Efficacy of Insoluble $\beta$-l, 3-glucan from Agrobacterium sp. R259 KCTC 10197BP (Agrobacterium sp. R259 KCTC 10197BP로부터 생산된 $\beta$-1, 3-glucan의 면역 활성 효능)

  • 심정현;최원아;상병찬;윤도영
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.459-465
    • /
    • 2002
  • $\beta$-l, 3-glucans are well known to enhance the immune reactions, resulting in antitumor, antibacterial, antiviral, anticoagulatory and wound healing activities. $\beta$-1, 3-glucans have various activities depending on molecular weight, degree of branching, conformation, water-solubility and intermolecular association. However, the $\beta$-1, 3-glucans linked backbone structure is essential and $\beta$-D-glucopyranosyl units are required for immunopotentiating activities. In this study, we tested the immunophamacological activities of insoluble $\beta$-1, 3-glucan from Agrobacterium sp. R259 KCTC 10197BP and confirmed the following activities: (1) IFN-${\gamma}$ production in PBMCs in the presence or in the absence of PHA, LPS, IL-18, and IL-12; (2) the induction of various cytokines in the spleen and thymus; (3) the adjuvant effect on the antibody production; (4) the cytotoxic and antitumor effects on cell lines and ICR mice. These results strongly suggest that $\beta$-1, 3-glucan from Agrobacterium sp. R259 KCTC 10197BP possesses various immunopharmacologica1 activities.

The Complete Chloroplast Genome Sequence and Intra-Species Diversity of Rhus chinensis

  • Kim, Inseo;Park, Jee Young;Lee, Yun Sun;Joh, Ho Jun;Kang, Shin Jae;Murukarthick, Jayakodi;Lee, Hyun Oh;Hur, Young-Jin;Kim, Yong;Kim, Kyung Hoon;Lee, Sang-Choon;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.243-251
    • /
    • 2017
  • Rhus chinensis is a shrub widely distributed in Asia. It has been used for traditional medicine and ecological restoration. Here, we report the complete chloroplast genome sequence of two R. chinensis genotypes collected from China and Korea. The assembled chloroplast genome of Chinese R. chinensis is 149,094 bp long, consisting of a large single copy (97,246 bp), a small single copy (18,644 bp) and a pair of inverted repeats (16,602 bp). Gene annotation revealed 77 protein coding genes, 30 tRNA genes, and 4 rRNA genes. A phylogenomic analysis of the chloroplast genomes with 11 known complete chloroplast genomes clarified the relationship of R. chinensis with the other plant species in the Sapindales order. A comparative chloroplast genome analysis identified 170 SNPs and 85 InDels at intra-species level of R. chinensis between Chinese and Korean collections. Based on the sequence diversity between Korea and Chinese R. chinensis plants, we developed three DNA markers useful for genetic diversity and authentication system. The chloroplast genome information obtained in this study will contribute to enriching genetic resources and conservation of endemic Rhus species.

Genetic Diversity of Rehmannia glutinosa Genotypes Assessed by Molecular Markers (분자표지자에 의한 지황 유전집단의 유전적 다양성)

  • Bang, Kyong-Hwan;Chung, Jong-Wook;Kim, Young-Chang;Lee, Jei-Wan;Kim, Hong-Sig;Kim, Dong-Hwi
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.435-440
    • /
    • 2008
  • Random amplified polymorphic DNA (RAPD) markers were used to identify the genetic diversities among and within varieties and landraces of Rehmannia glutinosa. Polymorphic and reproducible bands were produced by 10 primers out of total 20 primers used in the experiment. In RAPD analysis of the 11 genotypes, 64 fragments out of 73 amplified genomic DNA fragments were polymorphic which represented an average 6.4 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from 2 (OPA-1) to 13 (OPA-11) and varied in size from 200 bp to 1,400 bp. Especially, OPA-10, OPA-11 and OPA-19 primers showed specific bands for varieties of Korea Jiwhang and Jiwhang il ho, which could be useful for discriminating from other varieties and landraces of R. glutinosa. Percentage polymorphism ranged from a minimum of 50% (OPA-1) to a maximum of 100% (OPA-11), with an average of 87.7%. Similarity coefficients were higher in the genotypes of Korea Jiwhang and Jiwhang il ho than in other populations. In cluster analysis, genotypes of Korea Jiwhang, Jiwhang il ho, and Japanese accession were separated from those of other varieties and landraces. Average of genetic diversity within the population $(H_S)$ was 0.110, while average of total genetic diversity $(H_T)$ was 0.229. Across all RAPD makers the $G_{ST}$ value was 0.517, indicating that about 52% of the total genetic variation could be explained by RAPDs differences while the remaining 48% might be attributable to differences among samples. Consequently, RAPD analysis was useful method to discriminate different populations such as domestic varieties and other landraces. The results of the present study will be used to understand the population and evolutionary genetics of R. gllutinosa.

Draft genome sequence of Senegalimassilia sp. KGMB 04484 isolated from healthy Korean human feces (건강한 한국인 분변으로부터 분리된 Senegalimassilia sp. KGMB 04484 균주의 유전체 염기서열 초안)

  • Han, Kook-Il;Kang, Se Won;Kim, Ji-Sun;Lee, Keun Chul;Eom, Mi Kyung;Suh, Min Kuk;Kim, Han Sol;Park, Seung-Hwan;Lee, Ju Huck;Park, Jam-Eon;Oh, Byeong Seob;Yu, Seung Yeob;Choi, Seung-Hyeon;Lee, Dong Ho;Yoon, Hyuk;Kim, Byung-Yong;Lee, Je Hee;Lee, Jung-Sook
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.160-163
    • /
    • 2019
  • Senegalimassilia sp. KGMB 04484 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Senegalimassilia sp. KGMB 04484 was analyzed using the PacBio Sequel platform. The genome comprises a 2,748,041 bp chromosome with a G+C content of 61.18%, 2,300 total genes, 2,139 protein-coding gene, 21 rRNA genes, and 51 tRNA genes. Also, we found that strain KGMB 04484 had some genes for hydrolysis enzyme, fatty acid biosynthesis and metabolism in its genome based on the result of genome analysis. Those genes of KGMB 04484 may be related to regulation of human health and digest.

Draft genome sequence of Bacteroides sp. KGMB 02408 isolated from a healthy Korean feces (건강한 한국인 분변으로부터 분리된 Bacteroides sp. KGMB 02408 균주의 유전체 염기서열 초안)

  • Yu, Seung Yeob;Kim, Ji-Sun;Oh, Byeong Seob;Ryu, Seoung Woo;Park, Seung-Hwan;Kang, Se Won;Park, Jam-Eon;Choi, Seung-Hyeon;Han, Kook-Il;Lee, Keun Chul;Eom, Mi Kyung;Suh, Min Kuk;Kim, Han Sol;Lee, Dong Ho;Yoon, Hyuk;Kim, Byung-Yong;Lee, Je Hee;Lee, Jung-Sook;Lee, Ju Huck
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.296-299
    • /
    • 2019
  • The genus of Bacteroides has been isolated from vertebrate animal feces. Bacteroides sp. KGMB 02408 was isolated from fecal samples obtained from a healthy Korean. The wholegenome sequence of Bacteroides sp. KGMB 02408 was analyzed using the PacBio Sequel platform. The genome comprises a 5,771,427 bp chromosome with a G + C content of 39.50%, 5,005 total genes, 18 rRNA genes, and 74 tRNA genes. Furthermore, we found that strain KGMB 02408 had some genes for oxidoreductases and menaquinone biosynthesis in its genome based on the result of genome analysis.

Study on the Anti-HT-29 Human Colon Cancer Activity of $\beta$-Glucans and Their Enzymatically Hydrolyzed Oligosaccharides from Agalicus blazei Murill (아가리쿠스로부터 분리한 $\beta$-glucan과 그 올리고당류의 HT-29 인체 대장암 세포에 대한 항암 활성에 관한 연구)

  • Lee, Mi-Young;Kim, Ki-Hoon;Kim, Yea-Woon;Chang, Hun-Gil;Lee, Dong-Seok
    • Korean Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-325
    • /
    • 2006
  • [ $\beta$ ]-Glucans (AG) were prepared from Agaricus blazei cultured in the medium fortified with the roots of Pueraria spp. by repeated extraction with hot water, gel filtration chromatography and DEAE ion exchange chromatography. Oligosaccharides (AO) were derived from the hydrolysis of AG by an endo-$\beta$-(1$\rightarrow$6)-glucanase from Bacillus megaterium. The anti-HT-29 human colon cancer activity of AG or AO was investigated using MTT assay, apoptosis assay, cell cycle analysis, and cDNA microairay. AG and AO both inhibited proliferation and growth of HT-29 cells, and stimulated apoptosis of the cells in a dose-dependent manner. In cell cycle analysis, treating HT-29 cells with AG or AO resulted in the increase of cells in the G0 (sub-G1) and G1 phase. Especially, AO was more effective in inducing G0/G1 cell cycle arrest than AG. To screen the genes involved in the increase of apoptosis, the gene expression profile of the HT-29 cells treated with AO was examined by cDNA microarray. While several genes involved in cell cycle progression (CCND2 and CDK2) were down-regulated, many genes involved in apoptosis (TNFSF9, TNFRSF9, FADD, CASP8, BAD, CRADD, CASP9 etc), cell cycle inhibitor (CDKN2A), immune response (IL6, IL18, IL6R etc), and tumor suppressor (CEACAM1, TP53BP2, IRF1, and PHB) were up-regulated. These results suggest that AO could inhibit the proliferation and growth of HT-29 cells by G0/G1 cell cycle arrest and induction of apoptosis.

Genetic Diversity of Didymella bryoniae for RAPD Profiles Substantiated by SCAR Marker in Korea

  • Shim, Chang-Ki;Seo, Il-Kyo;Jee, Hyeong-Jin;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.36-45
    • /
    • 2006
  • Twenty isolates of Didymella bryoniae were isolated from infected cucurbit plants in various growing areas of southern Korea in 2001 and 2002. Random Amplified Polymorphic DNA (RAPD) group [RG] I of D. bryoniae was more virulent than RG IV to watermelon. Virulence of the RG I isolate was strong to moderate to cucumber, whereas that of the RG IV varied from strong, moderate to weak. Two hundred seventy-three amplified fragments were produced with 40 primers, and were analyzed by a cluster analysis using UPGMA method with an arithmetic average program of NTSYSPC. At the distance level of 0.7, two major genomic DNA RAPD groups were differentiated among 20 isolates. The RG I included 7 isolates from watermelon and one isolate from melon, whereas the RG IV included 12 isolates from squash, cucumber, watermelon and melon. Amplification of internal transcribed spacer (ITS) region and small subunit rRNA region from the 20 isolates yielded respectively a single fragment. Restriction pattern with 12 restriction enzymes was identical for all isolates tested, suggesting that variation in the ITS and small subunit within the D. bryoniae were low. Amplification of the genomic DNAs of the tested isolates with the sequence characterized amplified regions (SCAR) primer RG IF-RG IR specific for RG I group resulted in a single band of 650bp fragment for 8 isolates out of the 20 isolates. Therefore, these 8 isolates could be assigned into RG I. The same experiments done with RG IIF-RG IIR resulted in no amplified PCR product for the 20 isolates tested. An about 1.4 kb-fragment amplified from the RG IV isolates was specifically hybridized with PCR fragments amplified from genomic DNAs of the RG IV isolates only, suggesting that this PCR product could be used for discriminating the RG IV isolates from the RG I isolates as well other fungal species.

Characterization of the Acetolactate synthase (ALS) gene and Molecular Assay of Mutations Associated with Sulfonylurea Herbicide Resistance of Monochoria vaginalis (물달개비의 Acetolactate synthase (ALS) 유전자의 특성과 Sulfonylurea 제초제 저항성과 관련 돌연변의 분자생물학적 접근)

  • Park, Tae-Seon;Park, Hong-Kyu;Ku, Bon-Il;Kim, Young-Doo;Ko, Jae-Kwon;Lee, In-Yong;Park, Jae-Eup
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • This research aims to contribute the characterization of acetolactate synthase (Ec 4.1.3.18; ALS) and the resistance mechanism by sequence analysis of ALS gene of the sulfonylurea-resistant and -susceptible Monochoria vaginalis. The ALS gene was obtained from susceptible (S) and resistant (R) M. vaginalis to sulfonylurea herbicides (SUs). The 815 bp the fragment and the genomic DNA sequence coding for acetolactate synthase (ALS) of S and R biotypes of M. vaginalis were cloned and sequenced. Nineteen clones were divided greatly into 4 groups as result of sequencing. The first group was not difference to S type, the second group was amino acid of P197S which found point mutations causing substitution of serine for proline at amino acid 197, the third group was observed greatly other part of 6 places than group 1, and the fourth group appeared the intergrade of group 1 and 3. Therefore, it could be assumed what ALS gene of various types can be one plant. The peptide of the 13 amino acid Domain A region for ALS genes from R biotype of M. vaginalis differed from that of the S biotype by one base substitution at proline codon of Domain A. It could also be confirmed that point mutation of serine for proline at amino acid 197.