• Title/Summary/Keyword: rDNA ITS sequence

Search Result 484, Processing Time 0.028 seconds

Phylogenetic Analysis of Phellinus linteus and Related Species Comparing the Sequences of rDNA Internal Transcribed Spacers

  • Lee, Jae-Dong;Kim, Gi-Young;Park, Joung-Eon;Park, Hyung-Sik;Nam, Byung-Hyouk;An, Won-Gun;Lee, Tae-Ho
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.126-134
    • /
    • 2001
  • The phylogenetic tree displayed the presence of five groups in the Phellinus genus, which were distinguished based on their morphology. Most of the p. linteus appeared a cluster which was highly significant with the exception of P. linteus KACC 500122 and KACC 500411. They formed the sister taxa of P 1inteus where P. baumii, Phellinus sp. MPNU 7003, MPNU 7007, and MPNU 7010 had similar morphological characteristics. Also, P. nigricans IMSNU 32024 and P. pini var, carniformans IMSNU 32031 were grouped in the same cluster with P. igniarius KCTC 6227, KCTC 6228, and P. chrysoloma KCTC 6225 extracted from the Gen-Bank database. P. torulosus IMSNU 32028 and Phellinus sp. MPNU 7011 formed a closed group, however, these species had a distant taxa when compared with the other Phellinus species. The nucleotide sequences of the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) including the 5.85 rDNA were determined from 24 strains of the Phellinus genus in order to analyze their phylogenetic relationship. These fungi were divided into two basic groups based on their ITS length, however, this grouping was different from that based on their morphological characteristics. Although various ITS sequences were ambiguously aligned, conserved sites were also identified. Accordingly, a neighbor-joining tree was constructed using the nucleotide sequence data of the conserved sites of the ITS regions and the 5.8S rDNA.

  • PDF

Diversity of Endophytic Fungi Isolated from the Rootlet of Pinus densiflora Colonized by Tricholoma matsutake (송이버섯과 공생하는 소나무 세근으로부터 분리된 내생균의 다양성)

  • You, Young-Hyun;Yoon, Hyeok-Jun;Woo, Ju-Ri;Rim, Soon-Ok;Lee, Jin-Hyung;Kong, Won-Sik;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.223-226
    • /
    • 2011
  • Endophytic fungi were isolated from the Pinus densiflora rootlet colonized by ectomycorrhizal fungus Tricholoma matsutake. Eighteen species of endophytic fungi were identified by analyzing rDNA-ITS sequence. As the result of the rDNA-ITS analysis, ascomycota of 15 species and Mucoromycotina of 3 species were isolated. Of all the endophytic fungi isolated, Penicillium sp. was confirmed as the highest frequency.

DNA Structural Perturbation Induced by the CPI-Derived DNA Interstrand Cross-linker : Molecular Mechanisms for the Sequence Specific Recognition

  • Park, Hyun-Ju
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • The highly potent cytotoxic DNA-DNA cross-linker consists of two cyclopropa[c]pyrrolo[3,4-3]indol-4(5H)-ones insoles [(+)-CPI-I] joined by a bisamido pyrrole (abbreviated to "Pyrrole"). The Pyrrole is a synthetic analog of Bizelesin, which is currently in phase II clinical trials due to its excellent in vivo antitumor activity. The Pyrrole has 10 times more potent cytotoxicity than Bizelesin and mostly form DNA-DNA interstrand cross-links through the N3 of adenines spaced 7 bp apart. The Pyrrole requires a centrally positioned GC base pair for high cross-linking reactivity (i.e., $5^1$-T$AT_2$A*-$3^1$), while Bizelesin prefers purely AT-rich sequences (i.e., $5^1$-T$AT_4$A*-$3^1$, where /(equation omitted) represents the cross-strand adenine alkylation and A* represents an adenine alkylation) (Park et al., 1996). In this study, the high-field $^1$H-NMR and rMD studies are conducted on the 1 1-mer DNA duplex adduct of the Pyrrole where the 5′(equation omitted)TAGTTA*-3′sequence is cross-linked by the drug. A severe structural perturbation is observed in the intervening sequences of cross-linking site, while a normal B-DNA structure is maintained in the region next to the drug-modified adenines. Based upon these observations, we propose that the interplay between the bisamido pyrrole unit of the drug and central C/C base pair (hydrogen-bonding interactions) is involved in the process of cross-linking reaction, and sequence specificity is the outcome of those interactions. This study suggests a mechanism for the sequence specific cross-linking reaction of the Pyrrole, and provides a further insight to develop new DNA sequence selective and distortive cross-linking agents.

  • PDF

Study on the Genetic Variation of the Mitochondrial DNA in the Beet Armyworm, Spodoptera exigua (H bner), Using PCR-RFLP (PCR-RFLP를 이용한 파방나방 (Spodoptera exigua(H bner)) 미토콘트리아 DNA의 유전변이 연구)

  • 김용균;이명렬;정충렬
    • Korean journal of applied entomology
    • /
    • v.37 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • Restriction fragment length polymorphism (RFLP) of a DNA has been a useful tool for analyzing genetic variation. This research was performed to establish an RFLP analytic method on the mitochondrial DNA (mtDNA) of the beet armyworm, Spodoptera exigua (Hiibner). To do this, total size of the mtDNA was measured and polymerase chain reaction (PCR) primers were selected. Its mitochondrial genome size was ca. 16kb. From a serial PCR test of 29 primers refered to the compilation of Simon et al. (1994), 22 primers were selected to amplify its mtDNA fragments. These primers resulted in short (300-700 bp) or long (1000-2000 bp) DNA products which represented a total or partial sequence of each of CO-I, CO-11, Cyt-B, ND-1, 12s rRNA, 16s rRNA, and some tRNAs. PCR-RFLP was performed in some variable mtDNA regions with 8 kinds of 4bp recognizing restriction enzymes. Different populations from Andong, Kyungsan, and Sunchun did not show any restriction site polymorphisms but had some length variation in certain regions of mtDNA.

  • PDF

Sequence analysis of LSU rDNA of Alexandrium tamarense/catenella complex from Korean coastal waters

  • Kim, Keunyong;Kim, Chang-Hoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.252-254
    • /
    • 2001
  • A great deal of effort has been put into the identification of Alexandrium tamarense/fundyense/catenella complex by understanding correlation between morphological and subcellular characteristics. To date, the most promising tool for the study of these species is sequence analyses of rRNA genes that have been useful for various organisms' taxonomy and phylogeny, and its application such as in situ hybridization. (omitted)

  • PDF

Identification and Phylogenetic Relationship of Dermatophytes Based on RFLP Analysis and Nucleotide Sequence of Internal Transcribed Spacer (ITS)1 in Nuclear Ribosome DNA (ITS-RFLP와 ITS1 염기서열 분석에 의한 피부사상균의 동정과 계통적 유연관계)

  • Choi, Yeon-Hwa;Lee, Yeong-Seon;Yoo, Jae-Il;Kim, Bong-Su
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.49-60
    • /
    • 2000
  • ITSI-5.8S-ITSII rDNA region was amplified from the reference strains and clinical isolates with ITS1 and ITS4 primers. These primers amplified DNA fragments of 550 bp in Microsporum audouinii and Trichophyton violaceum, 700 bp in Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum, and Trichophyton tonsurans, and 750 bp in Microsporum ferreugineum and Microsporum canis. The restriction enzyme patterns of PCR products digested with 13 restriction enzyme including PstI were distint among the genera, whereas identical in the same species. Examination of the ITS (Internal Transcribed Spacers)1 nucleotide sequence revealed that there was the genetic difference in each genera and species. Phylogenetic relationship among each species showed that the Trichophyton mentagrophytes was more closely related Trichophyton tonsurans than Trichophyton rubrum, and Microsporum gypseum was less related than Microsporum spp..

  • PDF

Westerdykella reniformis: A New Record from Field Soils in Korea

  • Adhikari, Mahesh;Kim, Sang Woo;Gwon, Byeong Heon;Ju, Han Jun;Lee, Hyang Burm;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.48 no.1
    • /
    • pp.47-53
    • /
    • 2020
  • During a survey of fungal diversity in different provinces of South Korea in 2017, a new fungal isolate was discovered. This fungal isolate was identified as Westerdykella reniformis, based on its morphological characteristics and phylogenetic analysis, using internal transcribed spacer (ITS) and 28S ribosomal DNA (28S rDNA) sequence data. To our knowledge, W. reniformis has not previously been reported in South Korea. Thus, in this study, we report a new record of a species from the Dothideomycetes class in Korea, and provide a detailed description with morphological illustrations.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Molecular Authentication of Schisandrae Fructus and Analysis of Phylogenetic Relationship based on nrDNA-ITS sequences (nrDNA-ITS 분자마커를 이용한 오미자(五味子) 종 감별 및 기원분석 -ITS 염기서열을 이용한 오미자(五味子) 감별-)

  • Moon, Byeong-Cheol;Ji, Yun-Ui;Seo, Hyeong-Seok;Lee, A-Young;Chun, Jin-Mi;Kim, Ho-Kyoung
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.47-54
    • /
    • 2010
  • Objectives : The original plant species of Schisandrae Fructus (O-mi-ja) is prescribed as Schisandra chinensis $B_{AILL.}$, in Korea, but S. chinensis $B_{AILL.}$ and S. sphenanthera $R_{EHD.}$ et $W_{ILS.}$ in China. Moreover, fruit of several other species in genus Schisandra also have been used as the same herbal medicines. To develop a reliable method for correct identification of Schisandrae Fructus and to evaluate the phylogenetic relationship of S. chinensis and its related species, we analyzed internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA (nrDNA). Methods : Twenty-four plant samples of three Schisandra species and one Kadsura species, S. chinensis $B_{AILL.}$, S. spenanthera $R_{EHD.}$ et $W_{ILS.}$, S. nigra $M_{ax.}$ and Kadsura japonica $D_{UNAL}$ were collected from each different native habitate and farm in Korea and China. The nrDNA-ITS region of each samples were amplified using ITS1 and ITS4 primer and nucleotide sequences were determined after sub-cloning into the pGEM-Teasy vector. Authentic marker nucleotides were estimated by the analysis of ClastalW based on the entire nrDNA-ITS sequence. Results : In comparative analysis of the nrDNA-ITS sequences, we found specific nucleotide sequences including indels (insertions and deletions) and substitutions to distinguish C. chinensis, S. spenanthera, S. nigra, and K. japonica. These sequence differences at corresponding positions are avaliable nucleotide markers to determine the botanical origin of O-mi-ja. Moreover, we evaluated the phylogenetic relationship of four plant species by the analysis of nrDNA-ITS sequences. Conclusions : These marker nucleotides would be useful to identify the official herbal medicines by the providing of definitive information that can identify each plant species and distinguish it from unauthentic adulterants for O-mi-ja.

Prionchulus oleksandri (Nematoda: Mononchida) from Korea

  • Kim, Jiyeon;Kim, Taeho;Ryu, Shi Hyun;Park, Joong-Ki
    • Animal Systematics, Evolution and Diversity
    • /
    • v.34 no.4
    • /
    • pp.194-198
    • /
    • 2018
  • The genus Prionchulus Cobb, 1916 represents a group of predaceous nematodes belonging to the family Mononchidae Chitwood, 1937, and is found worldwide. However, only five species have been reported thus far from Korea. Prionchulus oleksandri Winiszewska and Susulovsky, 2003 is reported for the first time from Korea, from sediments collected from the Nakdong River. This species is distinguished from other Prionchulus species by its truncated lip region with small cephalic papillae and refringens vaginae. In this study, morphological characters(detailed morphometrics) of P. oleksandri are described and illustrated using optical microscopy. DNA barcode sequence information (the D2-D3 region of 28S rDNA, 18S rDNA, and internal transcribed spacer rDNA) is also provided for the molecular identification of the species.