• Title/Summary/Keyword: quinoxaline-2-ol

Search Result 1, Processing Time 0.014 seconds

Interaction of 2-Hydroxyquinoxaline (2-HQ) on Soil Enzymes and Its Degradation: A Review

  • Gangireddygari, Venkata Subba Reddy;Bontha, Rajasekhar Reddy;Yoon, Ju-Yeon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.399-410
    • /
    • 2020
  • The United Nations project the world population to reach 10 billion by the year 2057. To increase the food of the ever-increasing world population, agrochemicals are indispensable tools to the boon in agriculture production. These agrochemicals are a serious threat to the health of humans, plants, and animals. Agrochemicals are ultimately reached to the main reservoir/sink such as soil and contaminating the groundwater, disturb the soil health and in turn a serious threat to biogeochemical cycling and the entire biosphere. Among agrochemicals, quinalphosis one of the most repeatedly and widely used insecticides in the control of a wide range of pests that attack various crops. Quinalphos is shown to be primarily toxic in organisms by acetylcholinesterase enzyme action. Hydrolysis of quinalphos produces amajor metabolite 2-hydroxyquinoxaline (2-HQ), which has shown secondary toxicity in organisms. 2-HQ is reported to be mutagenic, carcinogenic, growth inhibition and induce oxidative stress in organisms. Quinoline is a heterocyclic compound and structural resemblance of 2-HQ with minor changes, but its degradation studies are enormous compared to the 2-HQ compound. Biotic factors in fate and behavior of 2-HQ in the environment are least studied. 2-HQ interactions with soil enzymes are vary from soil to soil. Based on the toxicity of 2-HQ in our stockpile we need to isolate a handful of microorganisms to treat this persistent metabolite and also other metabolites/compounds.This brief review will be significant from the point of biological and environmental safety.