• Title/Summary/Keyword: quinones

Search Result 81, Processing Time 0.022 seconds

Reaction of Sodium Tris(diethylamino)aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Jeoung, Min-Kyoo;Kim, Jong-Mi;Kwon, Oh-Oun;Lee, Keung-Dong;Kim, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.881-888
    • /
    • 1994
  • The approximate rates and stoichiometry of the reaction of excess sodium tris(diethylamino)aluminum hydride (ST-DEA) with selected organic compounds containing representative functional groups under standardized conditions(tetrahydrofuran, $0{\circ}$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of STDEA was also compared with those of the parent sodium aluminum hydride (SAH) and lithium tris(diethylamino)aluminum hydride (LTDEA). The reagent appears to be milder than LTDEA. Nevertheless, the reducing action of STDEA is very similar to that observed previously for LTDEA, as is the case of the corresponding parent sodium and lithium aluminum hydrides. STDEA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and 1-hexanol evolved hydrogen slowly, whereas 3-hexanol and 3-ethyl-3-pentanol, secondary and tertiary alcohols, were essentially inert to STDEA. Primary amine, such as n-hexylamine, evolved only 1 equivalent of hydrogen slowly. On the other hand, thiols examined were absolutely stable. STDEA reduced aidehydes and ketones rapidly to the corresponding alcohols. The stereoselectivity in the reduction of cyclic ketones by STDEA was similar to that by LTDEA. Quinones, such as p-benzoquinone and anthraquinone, were reduced to the corresponding 1,4-dihydroxycyclohexadienes without evolution of hydrogen. Carboxylic acids and anhydrides were reduced very slowly, whereas acid chlorides were reduced to the corresponding alcohols readily. Esters and epoxides were also reduced readily. Primary carboxamides consumed hydrides for reduction slowly with concurrent hydrogen evolution, but tertiary amides were readily reduced to the corresponding tertiary amines. The rate of reduction of aromatic nitriles was much faster than that of aliphatic nitriles. Nitrogen compounds examined were also reduced slowly. Finally, disulfide, sulfoxide, sulfone, and cyclohexyl tosylate were readily reduced without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent: like LTDEA, STDEA converted ester and primary carboxamides to the corresponding aldehydes in good yields. Furthermore, the reagent reduced aromatic nitriles to the corresponding aldehydes chemoselectively in the presence of aliphatic nitriles. Consequently, STDEA can replace LTDEA effectively, with a higher selectivity, in most organic reductions.

Reaction of Lithium Tris(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.469-475
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(diethylamino)aluminum hydride (LTDEA) with selected organic compounds containing representative functional groups under standardized condition (tetrahydrofuran, 0$^{\circ}C$) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of LTDEA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(dibutylamino)aluminum hydride (LTDBA). In general, the reactivity toward organic functionalities is in order of LAH${\gg}$LTDEA${\geq}$LTDBA. LTDEA shows a unique reducing characteristics. Thus, benzyl alcohol and phenol evolve hydrogen slowly. The rate of hydrogen evolution of primary, secondary, and tertiary alcohols is distinctive: 1-hexanol evolves hydrogen completely in 6 h, whereas 3-hexanol evolves hydrogen very slowly. However, 3-ethyl-3-pentanol does not evolve any hydrogen under these reaction conditions. Primary amine, such as n-hexylamine, evolves only 1 equivalent of hydrogen. On the other hand, thiols examined are absolutely inert to this reagent. LTDEA reduces aldehydes, ketones, esters, acid chlorides, and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly, where as tertiary amides are readily reduced. Finally, sulfides and sulfoxides are reduced to thiols and sulfides, respectively, without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent to convert esters, primary carboxamides, and aromatic nitriles into the corresponding aldehydes. Free carboxylic acids are also converted into aldehydes through treatment of acyloxy-9-BBN with this reagent in excellent yields.

Use of adipose-derived stem cells in lymphatic tissue engineering and regeneration

  • Forte, Antonio Jorge;Boczar, Daniel;Sarabia-Estrada, Rachel;Huayllani, Maria T.;Avila, Francisco R.;Torres, Ricardo A.;Guliyeva, Gunel;Aung, Thiha;Quinones-Hinojosa, Alfredo
    • Archives of Plastic Surgery
    • /
    • v.48 no.5
    • /
    • pp.559-567
    • /
    • 2021
  • The potential to differentiate into different cell lines, added to the easy and cost-effective method of extraction, makes adipose-derived stem cells (ADSCs) an object of interest in lymphedema treatment. Our study's goal was to conduct a comprehensive systematic review of the use of ADSCs in lymphatic tissue engineering and regeneration. On July 23, 2019, using PubMed/MEDLINE, Cochrane Clinical Answers, Cochrane Central Register of Controlled Trials, and Embase databases, we conducted a systematic review of published literature on the use of ADSCs in lymphatic tissue engineering and regeneration. There were no language or time frame limitations, and the following search strategy was applied: ((Adipose stem cell) OR Adipose-derived stem cell)) AND ((Lymphedema) OR Breast Cancer Lymphedema). Only original research manuscripts were included. Fourteen studies fulfilled the inclusion criteria. Eleven studies were experimental (in vitro or in vivo in animals), and only three were clinical. Publications on the topic demonstrated that ADSCs promote lymphangiogenesis, and its effect could be enhanced by modulation of vascular endothelial growth factor-C, interleukin-7, prospero homeobox protein 1, and transforming growth factor-β1. Pilot clinical studies included 11 patients with breast cancer-related lymphedema, and no significant side effects were present at 12-month follow-up. Literature on the use of ADSCs in lymphatic tissue engineering and regeneration demonstrated promising data. Clinical evidence is still in its infancy, but the scientific community agrees that ADSCs can be useful in regenerative lymphangiogenesis. Data collected in this review indicate that unprecedented advances in lymphedema treatment can be anticipated in the upcoming years.

Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species

  • Seong, Chi Nam;Kim, Mi Sun;Kang, Joo Won;Park, Hee-Moon
    • Journal of Species Research
    • /
    • v.8 no.2
    • /
    • pp.197-214
    • /
    • 2019
  • The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey's Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju. Most Halomonadaceae species isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Air-borne members of the genera Microvirga, Methylobacterium, and Massilia had common characteristics in terms of G+C content, major respiratory quinones, and major polar lipids.

The Metabolic Functional Feature of Gut Microbiota in Mongolian Patients with Type 2 Diabetes

  • Yanchao Liu;Hui Pang;Na Li;Yang Jiao;Zexu Zhang;Qin Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1214-1221
    • /
    • 2024
  • The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. β-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -I. Chemical Properties of Humic Acids from Plant Residues Characterized by IR Spectra (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 부식특성(腐植特性)에 관(關)한 연구(硏究) -1. 분광분석(分光分析)에 의(依)한 식물잔해(植物殘骸) 부식산(腐植酸)의 화학적(化學的) 성질규명(性質糾明))

  • Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.251-259
    • /
    • 1987
  • Humic acids extracted from decomposing plant residues were characterized by infrared(IR) spectra. The IR spectra were further interpreted by chemical analyses for oxygen-containing functional groups such as carboxyl, phenolic, alcoholic, carbonyl, and quinionic groups. 1. The IR spectra obtained in this study were divied into three categories: spectra of humic acids from grain crop straws of rice, barley, wheat and rye produced Type I, while that from wild grass hay yielded Type II, and those from forest tree litter of the deciduous and conifers were led to give Type III. 2. There were no significant changes in the absorption bands observed among humic acids extracted at various stages of decomposition of a given Plant material. 3. The absorption band at about $3,430cm^{-1}$ represents the presence of hydrogen-bonded hydroxyl groups, phenolic-OH groups being the major component. 4. A close relationship was found between the total acidity and the content of phenolic-OH groups of humic acids. The content of carboxyl groups maintains a direct relationship with the content of total hydroxyl groups, and such a close relationship also exists between the content of alcoholic hydroxyls and that of total hydroxyl groups. 5. Overlapping of the absorption bands of carbonyl groups and quinones renders it difficult to make differentiation between the two. 6. A variety of non-armoatic cyclic hydrocarbons appears to be a structural component as evidenced by a sharp absorption peak near $995-1000cm^{-1}$.

  • PDF

Increased Cellular NAD+ Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice

  • Oh, Gi-Su;Lee, Su-Bin;Karna, Anjani;Kim, Hyung-Jin;Shen, AiHua;Pandit, Arpana;Lee, SeungHoon;Yang, Sei-Hoon;So, Hong-Seob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.257-266
    • /
    • 2016
  • Background: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to $NAD^+$ by various quinones and thereby elevates the intracellular $NAD^+$ levels. In this study, we examined the effect of increase in cellular $NAD^+$ levels on bleomycin-induced lung fibrosis in mice. Methods: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ${\beta}$-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ${\beta}1$ (TGF-${\beta}1$) and ${\beta}$-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results: ${\beta}$-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-${\beta}1$, ${\alpha}$-smooth muscle actin accumulation. In addition, ${\beta}$-lapachone showed a protective role in TGF-${\beta}1$-induced ECM expression and EMT in A549 cells. Conclusion: Our results suggest that ${\beta}$-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-${\beta}1$-induced EMT in vitro, by elevating the $NAD^+$/NADH ratio through NQO1 activation.

A Commensal Thermophile, Symbiobacterium toebii: Distribution, Characterization, and Genome Analysis

  • Bae Jin-Woo;Kim Kwang;Song Jae Jun;Ha Jae Seok;Kim Joong-Jae;Kang Gwan-Tae;Kim Mi-Hwa;Hong Seung-Pyo;Sung Moon-Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.46-53
    • /
    • 2001
  • A commensal thermophile, Symbiobacterium toebii, isolated from hay compost (toebii) in Korea commensally interacted with a thermophilic Geobacillus toebii sp. nov., which was a new species within the genus Geobacillus on the basis of the phenotypic traits and molecular systematic data. S. toebii required the crude extracts and/or culture supernatant of the Geobacillus toebii for axenic growth and could grow on the temperature between 45 and $70^{\circ}C$ (optimum: $60^{\circ}C$; 2.4 h doubling time) and pH 6.0 and 9.0 (optimum: pH 7.5). The G+C content of the genomic DNA was $65 mol\%$, and the major quinones were MK-6 and MK-7. A phylogenetic analysis of its 16S rDNA sequence indicated that Symbiobacterium toebii was closely related with solely reported Symbiobacterium thermophilum. The presence of the commensal thermophile 16S rDNA and accumulation of indole in all the enriched cultures indicate that Symbiobacterium toebii is widely distributed in the various soils. The genome of S. toebii constituted a circular chromosome of 3,280,275 base pairs and there was not an extra-chromosomal element (ECE). It contained about 4,107 predicted coding sequences. Of these protein coding genes, about $45.6\%$ was encoded well-known proteins and annotated the functional assignment of 1,874 open reading frames (ORFs), and the rest predicted to have unknown functions. The genes encoding thermostable tyrosine phenol-lyase and tryptophan indole-lyase were cloned from the genomic DNA of S. toebii and the enzymatic production of L-tyrosine and L-tryptophan was carried out with two thermostable enzymes overexpressed in recombinant E. coli.

  • PDF

Selection of Mutant Silkworm with Oxidation-deficient Haemolymph for Insect Cell Culture (곤충세포 배지 개발을 위한 체액산화지연 돌연변이 누에계통 선발)

  • Choi, Ji-Young;Kim, Jong-Gill;Choi, Young-Cheol;Yoon, Hyung-Joo;Ahn, Mi-Young;Kim, Sam-Eun;Hwang, Seok-Jo
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.47-50
    • /
    • 2007
  • Insect cell culture system has been demonstrated the effective means of producing medical and agricultural products. Furthermore, Fetal bovine serum (FBS) is in wide use in insect cell culture. Silkworm hemolymph was tested to develop as a substitute for FBS and was effective in insect cell growth. Hemolymph is oxidized and darkens visibly during the collection from silkworms due to the activity of tyrosinase in it. Toxic quinones are produced by the oxidation and consequently inhibit the cell growth. Heat treatment can be used to prevent the oxidation; however, the oxidation may occur during the collection of hemolymph before it is heat-treated. Hemolymphs collected from 257 different strains of silkworms were examined to select the slowly oxidized hemolymphs. Hemolymphs collected from mutant strains such as $Y_4$, TBO and $wE^b$ showed relatively slow color changes. Oxidation rates of the hemolymphs were measured by the absorbance change using a spectrophotometer. The absorbance of mutant hemolymph reached the saturation value at $20^{\circ}C$ in each 330 min ($Y_4$), 360 min (TBO) and 450 min ($wE^b$) min, whereas the total oxidation time of the wild-type (Baekokjam) hemolymph at the same temperature was 120 min. The cell growth in the medium supplemented with mutant species hemolmph was more effective that in the medium supplemented with Baekokjam species hemolymph.

Dicumarol Inhibits PMA-Induced MMP-9 Expression through NQO1-independent manner in Human Renal Carcinoma Caki Cells (인간 신장암 Caki세포에서 dicumarol에 의한 PMA 매개 matrix metalloproteinase-9의 발현 억제 효과)

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.174-180
    • /
    • 2016
  • Dicumarol is a coumarin derivative isolated from sweet clover (Melilotus alba), and has anti-coagulant activity with the inhibitory activity of NAD(P)H quinone oxidoreductase1 (NQO1). NQO1 catalyzes the two-electron reduction of quinones to hydroquinones. Dicumarol competes with NAD(P)H for binding to NQO1, resulting in the inhibition of NQO1 enzymatic activity. The expression of matrix metalloproteinases (MMPs) has been implicated in the invasion and metastasis of cancer cells. The expression of MMPs is regulated by cytokines and signal transduction pathways, including those activated by phorbol myristate acetate (PMA). However, the effects of dicumarol on metalloproteinase (MMP)-9 expression and activity are not investigated here. This study investigated whether dicumarol inhibits MMP-9 expression and activity in PMA-treated human renal carcinoma Caki cells. Dicumarol markedly inhibited the PMA-induced MMP-9 mRNA expression and MMP-9 activity. NF-κB and AP1 promoter activity, which is important in MMP-9 expression, also decreased in dicumarol-treated cells. Furthermore, dicumarol markedly suppressed the ability of PMA-mediated migration in Caki cells. When the relevance of NQO1 in the dicumarol-mediated inhibitory effect on PMA-induced MMP9 activity was elucidated, knock-down of NQO1 with siRNA was found to have no effect on PMA-induced MMP9 activity, suggesting that the stimulating effect of dicumarol on PMA-induced MMP9 activity is independent of NQO1 activity. Taken together, the present studies suggested that dicumarol may inhibit PMA-induced migration via down-regulation of MMP-9 expression and activity.