• Title/Summary/Keyword: quinones

Search Result 80, Processing Time 0.025 seconds

NAD(P)H Quinone Oxidoreductase 1 (NQO1) as a Cancer Therapeutic Target (암 치료 표적으로의 NAD(P)H Quinone Oxidoreductase 1 (NQO1))

  • Park, Eun Jung;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.98-103
    • /
    • 2014
  • NAD(P)H quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes the two electron reduction of diverse substrates, including quinones. It uses NADH or NADPH as a cofactor for enzymatic machinery. In the metabolism of quinones, NQO1 has two conflicting functions because of the different stability of converted hydroquinones. The stable form of hydroquinone is excreted from cells by conjugation with glutathione or glucuronic acid. The unstable form of hydroquinone induces cell death by induction of oxidative stress and DNA damage. Certain quinones known as bio-reductive agents have a cytotoxic function following reduction by NQO1. Bio-reductive agents, such as ${\beta}$-lapachone or mitomycin C, induce the depletion of NAD(P)H and the generation of oxidative stress in an NQO1-dependent manner. NQO1 is highly expressed in several cancer tissues. Therefore, NQO1 is a good therapeutic target for cancer treatment with bio-reductive agents.

PHOTOCHEMICAL FORMATION OF ISOMERIC QUINONE METHIDES FROM o-QUINONES AND ONE-WAY ISOMERIZATION

  • Kim, Ae-Rhan
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.49-52
    • /
    • 1997
  • Irradiation (300 nm) of 1, 2-benzoquinones 1 and diphenylacetylene 2 in dichloromethane yielded two isomeric quinone methides, 6 and 7. The same types of quinone methides, 9 and 10 (or 12 and 13) were obtained from the photocycloadditions of 9, 10-phenanthrenequinone 8 (or acenaphthenequinone 11) to diphenylacetylene 2. One-way photoisomerizations were observed between each isomeric adducts, (6, 7), (9, 10) and (12, 13).

  • PDF

Synthesis of Heterocyclic Quinones Containing Bridgehead Nitrogen Atom from 2-Aminonaphtho[2,3-d]thiazole-4,9-dione

  • Fandy, Ragab F.
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.446-449
    • /
    • 2000
  • Imidazonaphthothiazole derivatives 3∼6 were prepared by treatment of 2-aminonaphtho[2,3-d]-thiazole-4,9-dione(1) with phenacyl bromide, chloroacetic acid, diethyl oxalate and 2,3-dichloroquinoxaline respectively. The reaction of 1 with ethyl acrylate, ethyl acetoacetate and diethyl malonate gave the corresponding naphthothiazolopyrimidine derivatives 8∼11.

  • PDF

Generation of Reactive Oxygen Species by Nonenzymatic Reaction of Menadione with Protein Thiols in Plasma (Menadione과 Plasma내의 Protein Thiol의 비효소적인 화학반응에 의한 활성산소 생성)

  • 정선화;이무열;이주영;장문정;정진호
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.223-228
    • /
    • 1997
  • Quinones have been reported to undergo nonenzymatic reaction with thiols to generate reactive oxygens. It is therefore possible that the nonenzymatic reaction of quinones with thiols in plasma could lead to potentJared cellular toxicity or disease. When 1 mM menadione was added in plasma under pH 11.2, 7.4 and 5.0, the increase in oxygen consumption rate was the order of pH 11.2 > pH 7.4 > pH 5.0. In addition, oxygen consumption rates under plasma anticoagulated with trisodium citrate solution (pH 7.85) was significantly higher than those with acid-citrate-dextrose solution (pH 6.87). SOD and catalase reduced the rate of oxygen consumption induced by menadione in plasma. Taken together, these results suggest that the menadione-induced increased oxygen consumption was due to nonenzymatic reaction of menadione with thiols in the plasma. The presence of plasma has an additive effect on the increased oxygen consumption rates induced by the menadione treatments on our model tissue, platelets, as compared between washed platelet (WP) and platelet rich plasma (PRP). Cytotoxicity, as determined by LDH release, are well correlated with the oxygen consumption rates observed in each system and strongly suggest that menadione-induced cytotoxicity can be increased with the presence of blood plasma.

  • PDF

The Importance of Oxidative Stress in the Inhibition of Vasorelaxation Induced by Quinolinedione Derivatives, OQ1 and OQ21 (Quinolinedione 유도체, OQ1과 OQ21에 의한 혈관 이완 억제에 Oxidative stress의 중요성)

  • 김세련;이주영;김화정;유충규;정진호
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.652-658
    • /
    • 1999
  • To reveal the inhibitory mechanism of NO-dependent vasorelaxation by quinone derivatives (OQ1 and OQ21), we have compared the generation of free radicals by oxidative stress and the formation of cellular adducts by arylation. First, we measured oxygen consumption by quinone derivatives as a marker of oxidative stress in order to investigate whether these quinone compounds could generate reactive oxygen species. Both OQ1 and OQ21 generated free radicals and OQ21 was more potent. These results suggested that free radicals be involved in the inhibition of vasorelaxation by quinones. Next, we measured the binding capacity of quinone derivatives with intracellular GSH and protein thiols (-SH) in order to investigate whether these quinones have arylation capacity. Compared to positive control groups (menadione), both OQ1 and OQ21 depleted intracellular GSH and protein thiols very slightly. These compounds have low toxicities in mammalian tissues. From these results, we concluded that the inhibition of vasorelaxation by quinone derivatives (OQ1, OQ21) may be cuased by generation of free radicals.

  • PDF