• Title/Summary/Keyword: quinolate metal complex

Search Result 3, Processing Time 0.017 seconds

The Effect of Quinolate Metal Complex as an Electron Injection Layers on the Performance of Organic Light Emitting Devices (유기 전기 발광 소자의 전자 주입층)

  • Choi, Kyung-Hoon;Sohn, Byung-Chung;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.980-983
    • /
    • 2002
  • We investigated the effect of quinolate metal complex layer as an electron injection layer on the performance of OLEDs and optimized the device efficiency by varying from 0.5 to 10nm thickness of Liq layer. OLED with a structure of indium tin oxide/$\alpha$-napthylphenylbiphenyl(NPB,40nm)/tris-(8-hydroxyquinoline)aluminum(Alq3, 50nm)/Aluminum(150nm) were fabricated in sequence. The device with 1nm Quinolate metal complex layer showed significant enhancement of the device performance.

  • PDF

Electrical Characteristics of Organic Light Emitting Diodes (OLED) using the Alkali Metal Complex as New Electron Injection Layers (알칼리 금속 전자 주입층을 사용한 유기 전기 발광 소자 (OLED)의 전기적 특성)

  • Lee, Hyun-Koo;Kim, Jun-Ho;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1015-1018
    • /
    • 2004
  • We investigate the influence of the New Electron Injection Layers (EIL) on the performance of the Alkali Metal Complex vapor-deposited Organic Light Emitting Diodes(OLED). Two different Alkali Metal Complex were used; Lithium Quinolate (Liq), and Sodium Quinolate (Naq). In all cases, $Alq_3$ was the Electron Transporting Layer (ETL). We measure and compare the current density-voltage (J-V) and luminance-voltage (L-V) characteristics. We concluded that the turn-on voltage, and luminance efficiency are controlled by the type of EIL material used. We show the longer life-time OLED with Alkali Metal Complex EIL than OLED with LiF EIL. And we show the Optimized Alkali Metal Complex thickness is 3nm. Existent LiF to because is inorganic material, there is trouble to do epitaxy into thin layers but regulates the thickness in case of Alkali Metal Complex matter characteristic that is easy be. Alkali Metal Complex also appeared by sensitive thing in thickness than LiF If utilize this material, It is thought much advantages may be at common use of OLED.

  • PDF

Improved Electron Injection on Organic Light-emitting Diodes with an Organic Electron Injection Layer

  • Kim, Jun-Ho;Suh, Chung-Ha;Kwak, Mi-Young;Kim, Bong-Ok;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.221-224
    • /
    • 2005
  • To overcome of poor electron injection in organic light-emitting diodes (OLEDs) with Al cathode, a thin layer of inorganic insulating materials, like as LiF, is inserted between an Al cathode and an organic electron transport layer. Though the device, mentioned above, improves both turn on voltage and luminescent properties, it has some problems like as thickness restriction, less than 2 nm, and difficulty of deposition control. On the other hand, Li organic complex, Liq, is less thickness restrictive and easy to deposit and it also enhances the performance of devices. This paper reports the improved electron injection on OLEDs with another I A group metal complex, Potassium quinolate (Kq), as an electron injection material. OLEDs with organic complexes showed improved turn-on voltage and luminous efficiency which are remarkably improved compared to OLEDs with Al cathode. Especially, OLEDs with Kq have longer life time than OLEDs with Liq.