• Title/Summary/Keyword: quinidine

Search Result 30, Processing Time 0.027 seconds

Studies on the $K^+-dependent$ p-Nitrophenylphosphatase activity of the rat brain (백서 뇌 $K^+-dependent$ p-Nitrophenylphosphatase활성에 관한 연구)

  • Koo, Jin-Il
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.59-66
    • /
    • 1974
  • In recent years much interesting information about the mechanism of the $Na^+-K^+$ activated ATPase has been obtained from investigation of the $K^+-activated$ phosphatase activity which appears to be catalysed by the same enzyme. Also several studies have indicated that a $K^+-activated p-nitrophenylphosphatase activity is intimately related to the ATPase activity. And then the exact relation of p-nitrophenylphosphatase activity to $Na^+-K^+$ ATPase activity is not known. The effects of some ions and drugs on the p-nitrophenylphosphatase activity of the rat brain were investigated and the results were summarized as follows. 1. The p-nitrophenylphosphatase was stimulated markedly by low concentrations of $K^+$, while the activity was activated slightly in the presence of $Na^+$ and oligomycin. 2. Addition of both ATP and $Na^+$ caused a remarkable increase in the activity of the $K^+-dependent$ phosphatase at low concentrations of $K^+$. 3. In the presence of $Na^+$ and low concentrations of $K^+$, oligomycin activated the p-nitrophenylphosphatase. 4. O1igomycin inhibited the stimulation of the enzyme activity caused by $Na^{+}+ATP$. 5. Ouabain inhibited the $K^+-dependent$ p-nitrophenylphosphatase activity more in the presence of ATP and $Na^+$ than in their absence. 6. Quinidine inhibited both $Na^+-K^+$ ATPase and p-nitrophenylphosphatase. These inhibitory effects of the drug were partially antagonized by increasing $K^+$ concentrations. The sensitivity of the $K^+-dependent$ p-nitrophenylphosphatase to quinidine was greater than the that of $Na^+-K^+$ ATPase.

  • PDF

The Action of Extract of Aconitum koreanum R. Raymond on Isolated Clam Heart (우리나라 백부자의 적출 조개 심장운동에 대한 작용)

  • Ha, Byoung-Kuk;Kim, Yoo-Sung;Kim, Won-Ja;Park, Chul-Hoon
    • The Korean Journal of Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.15-25
    • /
    • 1972
  • Korean aconitum (Aconitum koreanum R. Raymond) as one of the botanical crude drugs which pertain to helleboraceae has been extensively applied in Chinese medicine during the past decades. It has been particularly used in immortal tonic among the folk remedies in China, however, its general uses comprehend diuresis, cardiotonic, analgesia, neuralgia, gout and, furthermore, even neoplastic effect. The components of aconitum have been acknowledged as aconitine, mesaconitine, hypaconitine, aconine and so on. The main ingredient, aconitine has the advantage of causing the atrial fibrillation, but, its pharmacological research has not been fully elucidated. Although there are many reports with regard to the pharmacological effects on the motility of several animal hearts, their conclusions have not been regretfully coincided yet. The authors hereby paid attention to this point of view and made experiment to examine the relationship between the alcohol extract of Korean aconitum and the motility of the isolated clam heart, making the use of several drugs related to the heart such as serotonin, acetylcholine, pilocarpine, physostigmine, barium chloride, procaine and quinidine. The cardiac movement of the isolated clam (Meretrix lusoria) heart in the standard sea water solution was recorded with the electric kymograph according to the Magnus method. The results of the experiment are as follows. 1. The motility of the isolated clam heart represents the tendency of gradual inhibition in proportion to the concentration of AK-A $10^{-4}$, $5{\times}10^{-4}$, and $10^{-3}$. 2. The cardiac inhibitory effect of AK-A $10^{-3}$ antagonizes the motility of the isolated clam heart pretreated with serotonin $10^{-6}$. 3. The cardiac inhibitory effect of AK-A $10^{-3}$ antagonizes the systolic state appealed by barium chloride $10^{-3}$. 4. The systolic state caused by quinidine $10^{-4}$ is not inhibited by AK-A $10^{-3}$.

  • PDF

Preparation of (S)-(+)-Pranidipine by Optical Resolution (광학 분할에 의한 (S)-(+)-Pranidipine의 제조방법)

  • Baek, Du-Jong;Yoon, Ji Hye;Kim, Moon-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.6
    • /
    • pp.488-492
    • /
    • 2015
  • In this study, the effective preparation method of (S)-(+)-pranidipine, the active component of antihypertensive drug as a calcium channel blocker, was developed using optical resolution. The racemic monocarboxylic acid 5 obtained by the hydrolysis of (±)-pranidipine was mixed with optically active quinidine to form salts, and the insoluble diastereomeric salt was collected and successive treatment with base and acid furnished (R)-(-)-carboxylic acid 7. (S)-(+)-Pranidipine was prepared by esterification of this acid with cinnamyl alcohol, and the analysis by chiral HPLC showed 100% enantiomeric excess (ee). This process would be industrially very useful to prepare chiral (S)-(+)-pranidipine, since the use of strong base and anhydrous solvents, and ultra-low temperature condition were excluded in this process.

Regulation of Magnesium Release by cAMP during Chemical Hypoxia in the Rat Heart and Isolated Ventricular Myocytes

  • Kim, Jin-Shang;Scarpa, Antonio
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • Chemically induced hypoxia has been shown to induce a depletion of ATP. Since intracellular free $Mg^{2+}\;([Mg^{2+}]_i)$ appears to be tightly regulated following cellular energy depletion, we hypothesized that the increase in $[Mg^{2+}]_i$ would result in $Mg^{2+}$ extrusion following hormonal stimulation. To determine the relation between $Mg^{2+}$ efflux and cellular energy state in a hypoxic rat heart and isolated myocytes, $[Mg^{2+}]_i,$ ATP and $Mg^{2+}$ content were measured by using mag-fura-2, luciferin-luciferase and atomic absorbance spectrophotometry. $Mg^{2+}$ effluxes were stimulated by norepinephrine (NE) or cAMP analogues, respectively. $Mg^{2+}$ effluxes induced by NE or cAMP were more stimulated in the presence of metabolic inhibitors (MI). Chemical hypoxia with NaCN (2 mM) caused a rapid decrease of cellular ATP within 1 min. Measurement of $[Mg^{2+}]_i$ confirmed that ATP depletion was accompanied by an increase in $[Mg^{2+}]_i.$ No change in $Mg^{2+}$ efflux was observed when cells were incubated with MI. In the presence of MI, the cAMP-induced $Mg^{2+}$ effluxes were inhibited by quinidine, imipramine, and removal of extracellular $Na^+.$ In addition, after several min of perfusion with $Na^+-free$ buffer, a large increase in $Mg^{2+}$ efflux occurred when $Na^+-free$ buffer was switched to 120 mM $Na^+$ containing buffer. A similar $Mg^{2+}$ efflux was observed in myocytes. These effluxes were inhibited by quinidine and imipramine. These results indicate that the activation of $Mg^{2+}$ effluxes by hormonal stimulation is directly dependent on intracellular $Mg^{2+}$ contents and that these $Mg^{2+}$ effluxes appear to occur through the $Na^+-dependent\;Na^+/Mg^{2+}$ exchange system during chemical hypoxia.

  • PDF

An Electrocardiographic Study on Tetrodotoxin Intoxicated Rabbits (Tetrodotoxin 중독가토(中毒家兎)의 심전도학적(心電圖學的) 연구(硏究))

  • Park, Yong-Kuk;Shin, Hong-Kee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 1976
  • Tetrodotoxin (TTX) is the purified active principle responsible for tetrodon (Puffer-fish) poisoning which has long been known in the Orient. The pharmacological actions of TTX have been rather extensively investigated. Two of the most prominent effects of intravenousely administered TTX are severe hypotension and respiratory paralysis resulting from its depressant actions on tissues. This depressant actions of TTX in turn result from the selective inhibition of sodium-carrying mechanism which is essential to generation of the action potential. TTX differs from local anesthetics in that it does not affect potassium conductance. Although the mechanism of the hypotensive action of TTX remains a subject of controversy, most investigator agree that TTX-induced hypotension is caused by alteration in the blood vessels rather than the heart. Not only the study on the effects of TTX on cardiac function is meager but the results of reported works are often contradictory. The present study was undertaken to investigate the effect of TTX on the electrocardiogram of the rabbit and to compare them with well known electrocardiographical characteristics found in digitalis and quinidine intoxicated animals. The results obtained from the present study are summarized as follows. 1. No changes were found in P-R interval and QRS duration after i.v. administration of $1.0\;{\mu}g/kg\;to\;1.5\;{\mu}g/kg$ TTX to the animals. It is obvious that there were no conduction disturbance between atria and ventricles as well as in the ventricular tissue. 2. In $1.0\;{\mu}g/kg$ TTX group, S-T interval and T-P segment were not changed whereas marked changes were observed in $1.5\;{\mu}g/kg$ TTX group. 3. The first and second degree A-V blocks appeared in the $2.0\;{\mu}g/kg$ TTX group. 4. TTX differs from digitalis and quinidine in that it does not cause S-T interval depression and T-wave inversion. In contrast with digitalis, TTX caused Q-T interval prolongation.

  • PDF

A Study on the Ouabain-induced Transient Inward Current(TI) in the Rabbit Sinoatrial Node (동방결절에서 Ouabain에 의하여 발생하는 일과성 내향전류(TI)에 관한 연구)

  • Choi, Jung-Yun;Hong, Chang-Yee;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.19 no.2
    • /
    • pp.101-111
    • /
    • 1985
  • Transient inward current (TI) was studied by the two micro-electrode voltage clamp technique in the sinoatrial node of the rabbit. The author confirmed that in $10^{-6}$ M ouabain TI was found in the SA node and investigated the effects of ions, $(Na^+,\;K^+,\;Ca^{2+})$, $\beta-agonist$ (isoprenaline), local anesthetics (quinidine, lidocaine) and Ca-blockers ($Co^{2+}$, verapamil, diltiazem) on the TI recorded during depolarizing voltage clamp pulses to -40 and -20 mV. The results obtained were as follows ; 1) $10^{-6}M$ ouabain increased the frequency of sinus action potential and decreased the amplitude, especially overshoot of action potential. TI was induced by the depolarizing voltage clamp Pulses and the magnitude of the slow inward current (isi) decreased and the time course was slowed by the same depolarizing pulses. 2) 30% $Na^{+}$ and 24mM $K^+$ decreased by $10^{-6}M$ ouabain and 6 mM $Ca^{2+}$ and $10^{-7}M$ isoprenaline increased TI, $i_{si}$ and current oscillations. 3) Quinidine $(5\times10^{-7}M)$ reduced TI and $i_{si}$ but lidocaine $(10^6\;-10^5M)$ didn't reduced or increase TI. Current oscillations increased and isi decreased by lidocaine. 4) Ca-blockers decreased the amplitude and the frequency of sinus action potential. TI and $i_{si}$ decreased significantly but were not abolished completely at the concentrations used in this experiment. Verapamil and diltiazem had inhibitory action on TI in $2\times10^{-7}M$ concentration and showed very slow recovery after wasting out with normal Tyrode solution.

  • PDF

hERG Channel-Related Cardiotoxicity Assessment of 13 Herbal Medicines (한약재 13종의 hERG 채널 관련 심장독성 평가)

  • Ha, Hyekyung;Lee, Sion;Kim, Dong-Hyun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.44-55
    • /
    • 2021
  • Objectives: As the use of herbal medicinal products (HMPs) increases worldwide, systematic verification of the safety of HMPs is required. The induction of cardiotoxicity is one of the major factors in post-approval withdrawal of medicinal products, and drug-induced cardiotoxicity assessment is emerging as an important step in drug development. In the present study, we evaluated human ether-à-go-go-related gene (hERG) potassium channel-related cardiotoxicity to predict the risk of cardiac arrhythmia in thirteen herbal medicines known to have cardiac toxicity. Methods: We measured the inhibition rate of hERG potassium channel activity of 13 medicinal herbal extracts in hERG-expressing HEK 293 cells using an automated patch-clamping system. Quinidine was used as a positive control for inhibition of hERG activity. Results: Extracts of Evodiae Fructus, Strychni Semen, and Corydalis Tuber potently inhibited the activity of hERG, and IC50 values were 3.158, 19.87, and 41.26 ㎍/mL, respectively. Cnidi Fructus, Ephedra Herba, Lithospermi Radix, Polygoni Multiflori Radix, Visci Ramulus et Folium, Asiasari Radix et Rhizoma, and Scolopendra weakly inhibited hERG activity, and the IC50 value for each herbal medicine was more than 400 ㎍/mL. Aconiti Kusnezoffii Tuber and two types of Aconiti Lateralis Radix Preparata (Po and Yeom) had weak inhibitory activity against hERG, and the IC50 values were more than 700 ㎍/mL. The IC50 value of quinidine against hERG was 1.021 𝜇M. Conclusion: Evodiae Fructus, Strychni Semen, and Corydalis Tuber acted as potent inhibitors against hERG. These herbal medicines may cause cardiac arrhythmia through QT prolongation, so care should be taken when taking them.

Therapy for Postoperative Cardiac Arrhythmia in Patient with Mitral Valve Surgery (승모판막 수술 환자에서 발생한 부정맥의 치료)

  • 조건현
    • Journal of Chest Surgery
    • /
    • v.25 no.6
    • /
    • pp.672-677
    • /
    • 1992
  • This is a clinical review of the results from electric cardioversion and pharmacological therapy used in our hospital for reverting cardiac arrythmia in patients with mitral valve surgery between Jan. 1990 and Jun. 1991. Of 62 evaluated patients, 16 patients had regular sinus rhythm and the other 46 had arrhythmias [42; atrial fibrillation 1; atrial flutter 1; premature ventricular contraction] preoperatively. In 2 of patients with sinus rhythm, atrial fibrillation newly developed after surgery and was converted into sinus rhythm soon by intravenous administration of digoxin. Remaining 14 patient resumed sinus rhythm spontaneously. In patients with preoperative arrythmia, 3 patients reverted into sinus rhythm from atrial fibrillation by electric cardioversion at operative field, 1 patient by lidocain and mexiletine, 4 patients by combined use of digoxin and verapamil, 4 patients by 2 times of oral quinidine and 9 patient by long term use of oral amiodarone. Throughout this consecutive trials of anti-arrhythmic drugs and electric cardioversion, Conversion into normal sinus rhythm occurred in 48% of patients with arrhythmia developed after mitral valve surgery.

  • PDF

Drug Interactions between Cardiovascular Agents and Psychotropic Drugs (심혈관질환약물과 향정신성약물의 약물상호작용)

  • Park, Joo-Eon;Jung, Kyung-Hee
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • There are numerous drug interactions related to many psychotropic and cardiovascular medications. Firstly, the principles in predicting drug interactions are discussed. Cytochrome P (CYP) 450 plays a significant role in the metabolism of these drugs that are substrates, inhibitors, or inducers of CYP450 enzymes. The two most significant enzymes are CYP2D6 and CYP3A4. The ability of psychotropic drugs to act as inhibitors for the enzymes may lead to altered efficacy or toxicity of co-administered cardiovascular agents as a substrate for the enzymes. The following is also a review of the known interactions between many commonly prescribed cardiovascular agents and psychotropic drugs. Most beta blockers are metabolized by CYP2D6, which may lead to drug toxicity when they use in combination with potent CYP2D6 inhibitors including bupropion, chlorpromazine, haloperidol, selective serotonin reuptake inhibitors, and quinidine. Concomitant administration of lithium with angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and diuretics may increase serum lithium concentrations and toxicity. Calcium channel blockers and cholesterol lowering agents are subject to interactions with potent inhibitors of CYP3A4, such as amiodarone, diltiazem, fluvoxamine, nefazodone, and verapamil. Prescribing antiarrhythmic drugs in conjunction with medications are known to prolong QT interval and/or inhibitors on a relevant CYP450 enzyme is generally not recommended, or needs watchful monitoring. Digoxin and warfarin also have warrant careful monitoring if co-administered with psychotropic drugs.

  • PDF