• 제목/요약/키워드: quickly water-absorbent and dry properties

검색결과 1건 처리시간 0.016초

운동에 의한 열 스트레스하에서 흡한속건성 소재 운동복 착용시의 온열생리적 반응 및 주관적 감각 (Thermophysiological Responses and Subjective Sensations when Wearing Clothing with Quickly Water-Absorbent and Dry Properties Under Exercise-Induced Heat Strain)

  • 이소진;박신정
    • 한국의류산업학회지
    • /
    • 제8권3호
    • /
    • pp.349-356
    • /
    • 2006
  • The purpose of this study was to compare the thermophysiological responses and subjective sensations of clothing materials with different water transfer property investigated in exercising and resting subjects at an ambient temperature of $20^{\circ}C$ and a relative humidity of 40%. Two kinds of clothing ensemble were tested: 100% cotton with highly water-absorbent but slowly dry properties(C) and 100% polyester with quickly water-absorbent and dry properties by four capillary channels(QADP). Seven apparently healthy male participants each undertook two series of experiments comprised 10-min of rest, 20-min of exercise with 70% of $VO_{2max}$ on a treadmill and 20-min of recovery. Mean skin temperature was significantly lower in QADP than in C during exercise and recovery. Clothing microclimate temperature was significantly lower in QADP during exercise and clothing surface temperature was also lower in QADP especially during recovery. Also, clothing surface humidity was significantly higher in QADP after the later half of exercise. The concentration of blood lactic acid tended to decrease to a lower level at recovery 3 minutes when wearing QADP rather than C clothing ensemble. Metabolic energy was marginally significantly less during the second half of exercise in QADP. Body mass loss tended to be greater in C than in QADP. The participants had better scores in thermal sensation, comfortable sensation and wetness in QADP during exercise and recovery. These results show that functional materials with quickly water-absorbent and dry properties can alleviate heat strain and induce more comfortable clothing microclimates and subjective sensations in the exercise-induced hyperthermia.