• Title/Summary/Keyword: query Expansion

Search Result 131, Processing Time 0.023 seconds

Query Expansion based on Word Sense Community (유사 단어 커뮤니티 기반의 질의 확장)

  • Kwak, Chang-Uk;Yoon, Hee-Geun;Park, Seong-Bae
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1058-1065
    • /
    • 2014
  • In order to assist user's who are in the process of executing a search, a query expansion method suggests keywords that are related to an input query. Recently, several studies have suggested keywords that are identified by finding domains using a clustering method over the documents that are retrieved. However, the clustering method is not relevant when presenting various domains because the number of clusters should be fixed. This paper proposes a method that suggests keywords by finding various domains related to the input queries by using a community detection algorithm. The proposed method extracts words from the top-30 documents of those that are retrieved and builds communities according to the word graph. Then, keywords representing each community are derived, and the represented keywords are used for the query expansion method. In order to evaluate the proposed method, we compared our results to those of two baseline searches performed by the Google search engine and keyword recommendation using TF-IDF in the search results. The results of the evaluation indicate that the proposed method outperforms the baseline with respect to diversity.

Query Expansion and Term Weighting Method for Document Filtering (문서필터링을 위한 질의어 확장과 가중치 부여 기법)

  • Shin, Seung-Eun;Kang, Yu-Hwan;Oh, Hyo-Jung;Jang, Myung-Gil;Park, Sang-Kyu;Lee, Jae-Sung;Seo, Young-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.743-750
    • /
    • 2003
  • In this paper, we propose a query expansion and weighting method for document filtering to increase precision of the result of Web search engines. Query expansion for document filtering uses ConceptNet, encyclopedia and documents of 10% high similarity. Term weighting method is used for calculation of query-documents similarity. In the first step, we expand an initial query into the first expanded query using ConceptNet and encyclopedia. And then we weight the first expanded query and calculate the first expanded query-documents similarity. Next, we create the second expanded query using documents of top 10% high similarity and calculate the second expanded query- documents similarity. We combine two similarities from the first and the second step. And then we re-rank the documents according to the combined similarities and filter off non-relevant documents with the lower similarity than the threshold. Our experiments showed that our document filtering method results in a notable improvement in the retrieval effectiveness when measured using both precision-recall and F-Measure.

A Study on the Improvement of Retrieval Effectiveness to Clustered and Filtered Document through Query Expansion (질의어 확장에 기반을 둔 클러스터링 및 필터링 문서의 검색효율 제고에 관한 연구)

  • 노동조
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.14 no.1
    • /
    • pp.219-230
    • /
    • 2003
  • The purpose of this study is to improve of retrieval effectiveness to clustered and filtered document through query expansion. The result of this research prove that extended queries and documents, information in encyclopedia, clustering and filtering techniques are effective to promote retrieval effectiveness.

  • PDF

A Wikipedia-based Query Expansion Method for In-depth Blog Distillation (주제를 깊이 있게 다루는 블로그 피드 검색을 위한 위키피디아 기반 질의 확장 방법)

  • Song, Woo-Sang;Lee, Ye-Ha;Lee, Jong-Hyeok;Yang, Gi-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1121-1125
    • /
    • 2010
  • This paper proposes a Wikipedia-based feedback method for in-depth blog distillation whose goal is to find blogs that represent in-depth thoughts or analysis on a given query. The proposed method uses Wikipedia articles which are relevant to the query. TREC Blogs08 collection which is a large-scale blog corpus and English Wikipedia dump were used for experiments, The proposed method significantly increased the retrieval performance including MAP over the conventional post based feedback method.

XML Query-Expansion by Ontology-DTD Match (온톨로지-DTD 정합에 의한 XML 질의 확장)

  • Kim, Myung-Sook;Kong, Yong-Hae
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.773-780
    • /
    • 2005
  • If XML queries are expanded based on ontology, broader search may be possible. On the other hand, queries that are not adequate to target documents may also degrade the search efficiency. We try to improve query adequacy by expanding query based on a reduced ontology, which is the result of ontology and target DTD match. The match considers ontology concepts and DTD elements as well as ontology and DTD attributes. Since the reduced ontology can improve the hit ratio of queries and also be successively reusable for XML documents of a kind, the proposed method can improve XML search efficiency.

Query Expansion based on Word Graph using Term Proximity (질의 어휘와의 근접도를 반영한 단어 그래프 기반 질의 확장)

  • Jang, Kye-Hun;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.1
    • /
    • pp.37-42
    • /
    • 2012
  • The pseudo relevance feedback suggests that frequent words at the top documents are related to initial query. However, the main drawback associated with the term frequency method is the fact that it relies on feature independence, and disregards any dependencies that may exist between words in the text. In this paper, we propose query expansion based on word graph using term proximity. It supplements term frequency method. On TREC WT10g test collection, experimental results in MAP(Mean Average Precision) show that the proposed method achieved 6.4% improvement over language model.

TAKES: Two-step Approach for Knowledge Extraction in Biomedical Digital Libraries

  • Song, Min
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.1
    • /
    • pp.6-21
    • /
    • 2014
  • This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.

Survey of Automatic Query Expansion for Arabic Text Retrieval

  • Farhan, Yasir Hadi;Noah, Shahrul Azman Mohd;Mohd, Masnizah
    • Journal of Information Science Theory and Practice
    • /
    • v.8 no.4
    • /
    • pp.67-86
    • /
    • 2020
  • Information need has been one of the main motivations for a person using a search engine. Queries can represent very different information needs. Ironically, a query can be a poor representation of the information need because the user can find it difficult to express the information need. Query Expansion (QE) is being popularly used to address this limitation. While QE can be considered as a language-independent technique, recent findings have shown that in certain cases, language plays an important role. Arabic is a language with a particularly large vocabulary rich in words with synonymous shades of meaning and has high morphological complexity. This paper, therefore, provides a review on QE for Arabic information retrieval, the intention being to identify the recent state-of-the-art of this burgeoning area. In this review, we primarily discuss statistical QE approaches that include document analysis, search, browse log analyses, and web knowledge analyses, in addition to the semantic QE approaches, which use semantic knowledge structures to extract meaningful word relationships. Finally, our conclusion is that QE regarding the Arabic language is subjected to additional investigation and research due to the intricate nature of this language.

Automatic Text Summarization Using Query Expansion (질의확장을 이용한 자동 문서요약)

  • 한경수;백대호;임해창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.339-341
    • /
    • 2000
  • 문서요약이란 문서의 기본적인 내용을 유지하면서 문서의 복잡도를 줄이는 작업이다. 인터넷과 같은 정보기술의 발달로 정보의 양이 급증함에 따라, 정보 과적재(information over load) 문제의 해결을 위해 자동 문서요약시스템의 필요성이 대두되었다. 본 논문에서는 의사 적합성 피드백(pseudo relevance feedback)에 의한 질의확장(query expansion) 기법을 적용한 자동 문서요약 모델을 제안한다. 제안하는 모델의 특징은 질의를 분해함으로써, 적합성 피드백 과정에서 질의가 편향(bias)되어 요약이 잘못되는 문제를 방지할 수 있다는 것이다. 신문기사를 대상으로 평가한 결과 제안한 모델이 질의확장을 적용하지 않은 방법이나 하나의 질의만을 유지하는 일반적인 적합성 피드백 모델보다 더 좋은 성능을 보였다.

  • PDF

Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity (잠정적 부적합 문서와 어휘 근접도를 반영한 어휘 그래프 기반 질의 확장)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.189-194
    • /
    • 2012
  • In this paper, we propose a query expansion method based on word graphs using pseudo-relevant and pseudo non-relevant documents to achieve performance improvement in information retrieval. The initially retrieved documents are classified into a core cluster when a document includes core query terms extracted by query term combinations and the degree of query term proximity. Otherwise, documents are classified into a non-core cluster. The documents that belong to a core query cluster can be seen as pseudo-relevant documents, and the documents that belong to a non-core cluster can be seen as pseudo non-relevant documents. Each cluster is represented as a graph which has nodes and edges. Each node represents a term and each edge represents proximity between the term and a query term. The term weight is calculated by subtracting the term weight in the non-core cluster graph from the term weight in the core cluster graph. It means that a term with a high weight in a non-core cluster graph should not be considered as an expanded term. Expansion terms are selected according to the term weights. Experimental results on TREC WT10g test collection show that the proposed method achieves 9.4% improvement over the language model in mean average precision.