• 제목/요약/키워드: quercetin derivatives

검색결과 38건 처리시간 0.021초

Characterization of quercetin and its glycoside derivatives in Malus germplasm

  • Zhang, Lei;Xu, Qipeng;You, Yaohua;Chen, Weifeng;Xiao, Zhengcao;Li, Pengmin;Ma, Fengwang
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • 제59권6호
    • /
    • pp.909-917
    • /
    • 2018
  • Quercetin and its glycoside derivatives were identified and quantified using high-performance liquid chromatograph (HPLC) and liquid chromatograph/mass spectrometer/mass spectrometer (LC/MS/MS) in the leaves, flowers, and fruits of 22 Malus genotypes. In all genotypes, small amounts of quercetin aglycone were present, with water-soluble glycoside forms were the most abundant in different Malus plant tissues, including quercetin-3-galactoside, quercetin-3-rutinoside, quercetin-3-glucoside, quercetin-3-xyloside, quercetin-3-arabinoside, and quercetin-3-rhamnoside. Among these six quercetin glycosides, quercetin-3-galactoside was the common form in Malus plants, except in the leaves and flowers of M. ceracifolia and M. magdeburgensis, and in the fruits of M. micromalus 'Haihong Fruit', where there was a higher concentration of quercetin3-glucoside. Among the different tissues tested, leaves contained the highest concentration of quercetin and its glycosides, while fruits contained the lowest concentrations of these compounds. Among the genotypes we analyzed, no specific genotype consistently contained the highest concentration of quercetin and its glycoside derivatives. M. domestica 'Honeycrisp' had the highest total compound concentration (approximately $1600mg\;kg^{-1}$), whereas M. hupehensis contained the lowest in its fruits. In contrast, the concentration of total quercetin and its glycosides was more than $5000mg\;kg^{-1}$ in the leaves of eight genotypes and greater than $2500mg\;kg^{-1}$ in the flowers of seven species. In general, the concentration of quercetin and its glycoside derivatives depended on the species and tissue type. These results may provide useful information for the evaluation and selection of edible Malus fruits and the materials for quercetin glycoside extraction.

A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives

  • Magar, Rubin Thapa;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.11-20
    • /
    • 2020
  • Quercetin and its derivatives are important metabolites that belong to the flavonol class of flavonoids. Quercetin and some of the conjugates have been approved by the FDA for human use. They are widely distributed among plants and have various biological activities, such as being anticancer, antiviral, and antioxidant. Hence, the biosynthesis of novel derivatives is an important field of research. Glycosylation and methylation are two important modification strategies that have long been used and have resulted in many novel metabolites that are not present in natural sources. A strategy for modifying quercetin in E. coli by means of glycosylation, for example, involves overexpressing respective glycosyltransferases (GTs) in the host and metabolic engineering for increasing nucleoside diphosphate sugar (NDP-sugar). Still others have used microorganisms other than E. coli, such as Streptomyces sp., for the biotransformation process. The overall study of the structural activity relationship has revealed that modification of some residues in quercetin decreased one activity but increased others. This review summarizes all of the information mentioned above.

Synthesis of Quercetin and Luteolin Derivatives with Cell Proliferation Inhibitory Activity and Toxicity in B16 Melanoma Cells

  • Jongyun Jang;Seong Uk Lee;Yoon Hee Kim;Dong Wook Kang
    • 대한화학회지
    • /
    • 제67권3호
    • /
    • pp.181-190
    • /
    • 2023
  • Melanoma is a malignant skin tumor caused by damage to melanocytes that can spread to other organs. Hence, various studies have been conducted on preventing the spread of melanoma. Flavonoid-structured substances such as apigenin and galanzin are effective therapeutic agents for inhibiting the proliferation and metastasis of melanoma. In this study, luteolin, quercetin, and their respective derivatives were synthesized. These compounds inhibited cell proliferation of B16 melanoma cells. These results confirmed that the derivatives of quercetin and luteolin may be useful as therapeutic agents to prevent melanoma metastasis.

천연물질 퀘르세틴 유도체의 다양한 구조 및 효소 저해 활성 (Natural Quercetin Derivatives: Structures and Biological Activities Based on Enzyme Inhibition)

  • 강나래;손윤곤;김정윤
    • 생명과학회지
    • /
    • 제34권9호
    • /
    • pp.656-665
    • /
    • 2024
  • 효소 억제제는 인체 내 다양한 대사과정을 조절하는 단백질에 속하는 효소의 작용을 억제하여 특정 질병이나 상태를 치료하는 데 도움을 준다. 퀘르세틴은 폴리페놀 계열에 속하는 플라보노이드의 일종으로 식물에서 발견되는 이차 대사산물이다. 이러한 퀘르세틴은 구조적 이점을 바탕으로 효소의 활성부위에 결합하여 α-glucosidase, acetylcholinesterase, bacterial neuraminidase, xanthine oxidase에 대한 억제 활성을 갖는 것으로 보고된다. 또한, 퀘르세틴은 glycosylation, methoxylation, alkylation 등을 통해 특징적인 치환기를 가질 수 있으며 이러한 천연 퀘르세틴 유도체는 효소 활성 부위의 촉매 잔기와 특이적인 결합 패턴을 나타내어 더욱 우수한 효소저해활성을 가질 수 있다. 따라서, 본 논문에서는 퀘르세틴 및 그 유도체의 특징적인 구조에 대해 알아보고 이들의 효소저해활성을 통해 유도체별 다양한 질병을 목표로 하는 효과적인 효소 저해제 개발에 유망한 후보가 될 수 있음을 시사한다.

New Flavonol Glycosides from Leaves of Symplocarpus renifolius

  • Whang, Wan-Kyunn;Lee, Moo-Taek
    • Archives of Pharmacal Research
    • /
    • 제22권4호
    • /
    • pp.423-427
    • /
    • 1999
  • A study was carried out to evaluate flavonol glycosides in leaves of Symplocarpus renifolius (Araceae). From the water fraction of the MeOH extract, three new flavonol glycosides were isolated along with three known compounds, Kaempferol-3-O-$\beta$-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranoside, quercetin-3-O-$\beta$-D-glucopyranosy-1-($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, and caffeic acid. The structures of the new flavonol glycosides were elucidated by chemical and spectral analyses a quercetin-3-O-$\beta$-D-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranoside, isorhamnetin-3-O-$\beta$-D-glucopyranosyl-(1 2)-$\beta$-D-glucopyranosyl-7-O-$\beta$-D-glucopyranosdie, and quercetin-3-O$\beta$-D-glucopyranosyl-($1{\rightarrow}2$)-$\beta$-D-glycopyranosyl-7-O-($6^{IIII}$-trans-caffeoyl)-$\beta$-D-glucopyranoside.

  • PDF

Isolation of Quercetin and Isorhamnetin Derivatives and Evaluation of Anti-microbial and Anti-inflammatory Activities of Persicaria glabra

  • Manivannan, R.;Shopna, R.
    • Natural Product Sciences
    • /
    • 제21권3호
    • /
    • pp.170-175
    • /
    • 2015
  • The present study aims to detect the rare flavonoids isolated from the leaves of Persicaria glabra. The known flavonoids: quercetin (1), isorhamnetin (2), avicularin (3) and new one isorhamnetin-3-O-α-L-(6''-E-p-coumaroyl)-rhamnoside (4) were identified by HPLC, UV, IR and NMR. P. glabra has used traditionally for its analgesic, anti-inflammatory and anti-rheumatic properties. To find out the ingredients responsible for the efficiency of this plant, we have used to study the anti-microbial and anti-inflammatory activities of different extracts.

Isolation and Antioxidative Activities of Caffeoylquinic Acid Derivatives and Flavonoid Glycosides from Leaves of Sweet Potato (Ipomoea batatas L.)

  • Kim, Hyoung-Ja;Jin, Chang-Bae;Lee, Yong-Sup
    • Biomolecules & Therapeutics
    • /
    • 제15권1호
    • /
    • pp.46-51
    • /
    • 2007
  • Bioassay-directed chromatographic fractionation of an ethyl acetate extract from leaves of sweet potato (Ipomoea batatas L.) afforded six quinic acid derivatives: 3,5-epi-dicaffeoylquinic acid (1), 3,5-dicaffeoylquinic acid (2), methyl 3,5-O-dicaffeoylquinate (3), methyl 3,4-dicaffeoylquinate (4), methyl 4,5-dicaffeoylquinic acid (5),4,5-dicaffeoylquinate (6), and two phenolic compounds: caffeic acid (7) and caffeic acid methyl ester (8) together with three flavonoids: quercetin 3-O-${\beta}$-D-glucopyranoside (9), quercetin 3-O-${\beta}$-D-glucopyranoside, isoquercitrin (10) and kaempferol 3-O-${\beta}$-D-glucopyranoside (11). The structures of these compounds were elucidated by the aid of spectroscopic methods. These compounds were assessed for antioxidant activities using three different cell-free bioassay systems. All isolates except 11 showed potent DPPH and superoxide anion radicals scavenging, and lipid peroxidation inhibitory activities. 3,5-epi-DCQA (1) and methyl quinates (3-5) along with flavonoide 9 were isolated for the first time from this plant.

Antioxidant Caffeic acid Derivatives from Leaves of Parthenocissus tricuspidata

  • Saleem, Muhammad;Kim, Hyoung-Ja;Jin, Changbae;Lee, Yong-Sup
    • Archives of Pharmacal Research
    • /
    • 제27권3호
    • /
    • pp.300-304
    • /
    • 2004
  • Five caffeic acid derivatives; methyl ester of caffeoylglycolic acid (1), dimethyl ester of caffeoyltartaric acid (2), dimethyl ester of caffeoyltartronic acid (3), monomethyl ester of caffeoyltartronic acid (4), methyl ester of caffeic acid (5), and some other secondary metabolites including; quercetin, quercetin 3-O-$\beta$-D-glucuronide methyl ester, kaempferol, 3,5,7,4'-O-tetramethylkaempferol, $\beta$-sitosterol glucoside, 2$\alpha$-hydroxyursolic acid and 2,24-dihydroxyursolic acid, have been isolated and characterized. All the isolated compounds were characterized with the help of NMR spectroscopy and mass spectrometry. Structure of compound 3 was also confirmed by a single X-ray crystallographic technique. Isolates were evaluated for anti-oxidant activities and most of the tested compounds were found to be potent in DPPH free radical scavenging ($IC_{50}{\;}={\;}4.56-14.17{\;}{\mu\textrm{g}}/mL$) and superoxide anion scavenging ($IC_{50}{\;}={\;}0.58-7.39{\;}{\mu\textrm{g}}/mL$) assays.

솔잎의 후라보노이드 아세틸화 배당체 (Flavonoid Acetylated Glucosides of the Needles of Pinus densiflora)

  • 이상극;배영수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.48-52
    • /
    • 2001
  • 강원대학교 구내림에서 자란 생장이 양호한 소나무 잎을 채취하여 아세톤-물(7 : 3, v/v)로 추출하고 네 개의 분획으로 분리한 후 에틸아세테이트용성 분획물에 대하여 Sephadex LH-20 칼럼으로 크로마토그래피를 실시하였으며 용리용매는 메탄올 및 에탄올 수용액과 에탄올-헥산 혼합액을 사용하였다. 단리된 화합물은 주로 flavan 화합물로 구성되어 있었으며 flavonoid 유도체인 kaempferol-3-O-g1ucopyranoside와 quercetin-3-O-(6"-O-acetyl)-gluco pyranoside도 소량으로 단리되었는데 이들은 소나무 잎의 추출성분에서는 처음으로 분리되었다. 단리된 화합물은 NMR 및 MS 스펙트럼을 이용하여 정확한 구조를 결정하였다.

  • PDF

Stepwise Synthesis of Quercetin Bisglycosides Using Engineered Escherichia coli

  • Choi, Gyu Sik;Kim, Hyeon Jeong;Kim, Eun Ji;Lee, Su Jin;Lee, Youngshim;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1859-1864
    • /
    • 2018
  • Synthesis of flavonoid glycoside is difficult due to diverse hydroxy groups in flavonoids and sugars. As such, enzymatic synthesis or biotransformation is an approach to solve this problem. In this report, we used stepwise biotransformation to synthesize two quercetin bisglycosides (quercetin 3-O-glucuronic acid 7-O-rhamnoside [Q-GR] and quercetin 3-O-arabinose 7-O-rhamnoside [Q-AR]) because quercetin O-rhamnosides contain antiviral activity. Two sequential enzymatic reactions were required to synthesize these flavonoid glycosides. We first synthesized quercetin 3-O-glucuronic acid [Q-G], and quercetin 3-O-arabinose [Q-A] from quercetin using E. coli harboring specific uridine diphopsphate glycosyltransferase (UGT) and genes for UDP-glucuronic acid and UDP-arabinose, respectively. With each quercetin 3-O-glycoside, rhamnosylation using E. coli harboring UGT and the gene for UDP-rhamnose was conducted. This approach resulted in the production of 44.8 mg/l Q-GR and 45.1 mg/l Q-AR. This stepwise synthesis could be applicable to synthesize various natural product derivatives in case that the final yield of product was low due to the multistep reaction in one cell or when sequential synthesis is necessary in order to reduce the synthesis of byproducts.