• 제목/요약/키워드: quench analysis

검색결과 127건 처리시간 0.03초

삼상일체화된 자속구속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 사고유형별 퀜치발생 분석 (Analysis of Quench Generation in Fault Types According to Inductance Variation in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 박충렬;임성훈;박형민;조용선;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.165-166
    • /
    • 2005
  • In this paper, we investigated the quench generation of HTSC elements in fault types according to inductance variation in the integrated three-phase flux-lock type SFCL. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

초전도자석내의 국부적 상변이에 대한 열적.전기역학적 해석 및 퀜치보호시스템의 설계 및 특성해석 (The Analysis of Quench Protection System through Thermo-Electrodynamics of Resistive Transition in SC Magnet)

  • 추용;배준한;김호민;장미혜;주민석;고태국;김기만;정상권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.86-88
    • /
    • 1997
  • The detection of the normal zones in the coil winding and the initiation of the proper dump sequence have been one of the most important areas in the superconducting magnet technology. In this paper, the process to derive optimal dump sequence has been investigated through quench simulation and analysis of magnetically coupled superconducting magnet system. The magnet terminal voltage and maximum temperature rise in the quench initiated point are calculated with respect to various input variables such as operation current, dump resistance, etc. The experimental system is comprised of sc solenoidal coil, data aquisition device, external circuit breakers and dump resistor. The quench behavior of the magnet(e.g., temperature profile and the voltage signal) was measured. From this results, theoretical predictions were found to coincide with the experimental observations.

  • PDF

Analysis Stability of Cable-In-Conduit-Conductor with NbTi Superconducting Strands of Various Cu/SC Ratios Used in PF6 of KSTAR

  • Qiuliang Wang;Kim, Myungkyu;Yoon, Cheon-Seong;Lee, Sangil;Kim, Keeman
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.53-56
    • /
    • 2001
  • The stability of PF 6-7 has been studied according to the transient analysis code TOKSCPF and quench analysis code QSAIT. We compare the stability and temperature rise with various Cu/SC ratios of 2.8 and 3.5 under the KSTAR normal operating conditions. It shows that the Cu/SC ratio has an influence on the quench propagation and stability margin. In transient operating condition, the Cu/SC ratio weakly influences on the temperature rise in PF magnet.

  • PDF

Analysis on operation characteristics and power burdens of the double quench trigger type SFCLs

  • Lim, Seung-Taek;Lim, Sung-Hun;Han, Tae-Hee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.33-37
    • /
    • 2017
  • To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. The capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system operator need a counter-measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as effective solutions to reduce the fault current. For the above reasons various type SFCLs have been studied recently. In this paper, operation characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. Another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.

열적으로 유도된 상 분리에 의해 제조된 폴리스티렌 미세 다공성 막 (Microporous Polystyrene Membranes Produced via Thermally Induced Phase Separation)

  • Song, Seung-Won;Torkelson, John M.
    • 멤브레인
    • /
    • 제5권3호
    • /
    • pp.119-128
    • /
    • 1995
  • 폴리스티렌과 싸이클로헥산 용액으로부터 제조된 멤브레인의 미세구조 형성에 미치는 coarsening의 효과를 주사전자현미경(SEM)을 이용하여 연구하였다. 고분자 용액의 열 분석은 DSC를 이용하여 행하여졌으며 demixing peak의 개시 온도로부터 binodal 곡선이 결정되었다. 열적으로 유도된 상 분리(TIPS) 공정과 freeze drying 기법을 이용하여 제조된 고분자 막의 미세 구조는 coarsening 시간과 quench 경로에 의해 큰 영향을 받음이 확인되었다. Spinodal decomposition이 상 분리 기구인 경우에는 멤브레인의 미세구조가 서로 잘 연결되고 거의 일정한 cell 크기를 갖게 되며, 용매를 제거하기 이전에 상 분리 시간을 증가시킴으로써 멤브레인의 pore 크기를 증가시킬 수 있음이 판명되었다. 또한 멤브레인의 cell 또는 pore 크기 증가는 coarsening time과 quench depth에 크게 의존함이 확인되었다. 본 연구에서는 특히 고분자 용액의 농도가 이로부터 제조되는 고분자 막의 구조에 미치는 역할을 규명하였다.

  • PDF

사고종류에 따른 삼상 일체화된 자속구속형 SFCL의 사고전류제한특성 분석 (Analysis of Fault Current limiting Characteristics According to Fault Type in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current limiting)

  • 박충렬;임성훈;박형민;조용선;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.54-56
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of HTSC elements in the integrated three-phase flux-lock type SFCL according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the three-line-to-ground fault. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Investigation of a best oxidation model and thermal margin analysis at high temperature under design extension conditions using SPACE

  • Lee, Dongkyu;No, Hee Cheon;Kim, Bokyung
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.742-754
    • /
    • 2020
  • Zircaloy cladding oxidation is an important phenomenon for both design basis accident and severe accidents, because it results in cladding embrittlement and rapid fuel temperature escalation. For this reason during the last decade, many experts have been conducting experiments to identify the oxidation phenomena that occur under design basis accidents and to develop mathematical analysis models. However, since the study of design extension conditions (DEC) is relatively insufficient, it is essential to develop and validate a physical and mathematical model simulating the oxidation of the cladding material at high temperatures. In this study, the QUENCH-05 and -06 experiments were utilized to develop the best-fitted oxidation model and to validate the SPACE code modified with it under the design extension condition. It is found out that the cladding temperature and oxidation thickness predicted by the Cathcart-Pawel oxidation model at low temperature (T < 1853 K) and Urbanic-Heidrick at high temperature (T > 1853 K) were in excellent agreement with the data of the QUENCH experiments. For 'LOCA without SI' (Safety Injection) accidents, which should be considered in design extension conditions, it has been performed the evaluation of the operator action time to prevent core melting for the APR1400 plant using the modified SPACE. For the 'LBLOCA without SI' and 'SBLOCA without SI' accidents, it has been performed that sensitivity analysis for the operator action time in terms of the number of SIT (Safety Injection Tank), the recovery number of the SIP (Safety Injection Pump), and the break sizes for the SBLOCA. Also, with the extended acceptance criteria, it has been evaluated the available operator action time margin and the power margin. It is confirmed that the power can be enabled to uprate about 12% through best-estimate calculations.

배전계통 위치별 초전도전류제한기 적용효과 분석

  • 임성훈;황종선;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.213-213
    • /
    • 2009
  • In this paper, we investigated the current limiting characteristics due to the application location of the superconducting fault current limiter (SFCL) such as the feeder, the bus, the secondary side of transformer in a power distribution system. In addition, the quench and the recovery characteristics of the SFCL installed in each location of the power distribution system were compared each other. Through the analysis, in case that the SFCL was applied into the feeder line, its current limiting and voltage-drop compensating characteristics were confirmed to be the more effective. On the other hand, the power burden of the SFCL was increased higher compared to the SFCL'S other application location.

  • PDF

PSCAD/EMTDC를 이용한 불평형 부하에서의 초전도 케이블의 운전특성 해석 (A Operated Characteristic Analysis of HTS Cable in Unbalanced Load Using PSCAD/EMTDC)

  • 이현철;황시돌;이근준
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1713-1719
    • /
    • 2008
  • A high temperature superconducting power cable (HTS power cable) was applied large current capacity by no resistance in normal state. Fault state was risen out of over-current but, it was limited to resistance. This study was modeling equivalence, and unbalanced state analyzed operating characteristic of HTS power cable. The equivalence model was composed superconductor, shield, and former part. This model simulation was appeared conductor and shield current in normal state, but unbalanced state was appeared former current as rise current by resistance. So it need to sufficiently influenced the quench characteristic when the former design.

Au/YBCO 박막 meander line의 퀜치회복에 대한 분석 (Analysis on quench recovery of Au/YBCO thin film mender lines)

  • 김혜림;최효상;임해용;김인선;현옥배
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.92-94
    • /
    • 2001
  • We investigated quench recovery characteristics of Au/YBCO thin film meander lines. YB$a_{2}$$Cu_{3}$ $O_{7}$films were coated in-situ with a gold layer and patterned into 2 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents at various source voltages. Resistance decreased first slowly and then rapidly to zero. Resistance vs. time curves for different source voltages fell on top of each other when translated horizontally. The slowly varying portion of data fell on straight lines of a slope on a semi-log scale at all source voltages. A heat balance equation reflecting heat loss from meander lines to surroundings explains these results quantitatively.

  • PDF