• Title/Summary/Keyword: quasilinear Stefan problem

Search Result 2, Processing Time 0.014 seconds

FULLY DISCRETE MIXED FINITE ELEMENT METHOD FOR A QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM IN NON-DIVERGENCE FORM

  • Lee, H.Y.;Ohm, M.R.;Shin, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.191-207
    • /
    • 2007
  • Based on a mixed Galerkin approximation, we construct the fully discrete approximations of $U_y$ as well as U to a single-phase quasilinear Stefan problem with a forcing term in non-divergence form. We prove the optimal convergence of approximation to the solution {U, S} and the superconvergence of approximation to $U_y$.

ERROR ESTIMATES FOR A SINGLE PHASE QUASILINEAR STEFAN PROBLEM WITH A FORCING TERM

  • Ohm, Mi-Ray;Shin, Jun-Yong;Lee, Hyun-Young
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.185-199
    • /
    • 2003
  • In this paper, we apply finite element Galerkin method to a single-phase quasi-linear Stefan problem with a forcing term. We consider the existence and uniqueness of a semidiscrete approximation and optimal error estimates in $L_2$, $L_{\infty}$, $H_1$ and $H_2$ norms for semidiscrete Galerkin approximations we derived.