• Title/Summary/Keyword: quartzite

Search Result 109, Processing Time 0.022 seconds

Genetic Consideration of Sericite Deposits Derived from Granitic Rocks in the Taebaegsan Region (태백산지역에 분포하는 화강암체 기원 견운모광상의 성인적 고찰)

  • Yoo, Jang-Han;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2008
  • Yeongweol sericite deposit of Gangwon Province is regarded as one of the sericite deposits derived from granitic rocks due to post-magmatic alkali metasomatism, and the other sericite deposit of the same origin is the Daehyun mine of Gyungbug Province. Sericite ores were originated from leucocratic granitic stocks of Cambrian-Triassic age which intruded the pegmatitic migmatite of the unknown age and granite of the Pre-cambrian age, respectivcly. Jangsan quartzite of the lowermost formations of the Paleozoic era, which played as the capping rock protected from the leakage of the hydrothermal solution. It is well known that those sericite deposits arc formed during formation of the geosyncline, and they are also situated in the margins of the Hambaeg Syncline. Leucocratic granites commonly contain pegmatites with tourmaline crystals, and are rich in potassium feldspars, and sodium plagioclase as well. Sericitized ores are mainly found as we go up to the higher elevations or to the margins of the stocks. And some of the Highest grade sericite ores show the monominerallic character composed of nearly pure sericite probably doc to the ultra greisenization. Chemical analysis shows higher $Na_{2}O$ and $K_{2}O$ contents $(2.00\sim7.03wt%)$ as the sericitizations arc preceded and they represent obvious greisenization. But low CaO contents $(0.05\sim4.51wt%)$ indicate that albitizations are so weak. Pyrophyllite of the Youngweol area is often accompanied by the sericite, indicating rather stronger thermal effect than the Daehyun mine. It is known that there are several Sn deposits originated from greisenization in the Taebaegsan region. And greisens are inclined to contain W, Mo and several REE's such as Be, Nb and Li, and so Taebaegsan region interbedded with lots of carbonate formations are still worthwhile to survey for those metallic deposits.

Geological Structures of the Southern Jecheon, Korea: Uplift Process of Dangdusan Metamorphic Complex and Its Implication (옥천대 제천 남부의 지질구조: 당두산변성암복합체의 상승과정과 그 의미)

  • Kihm, You-Hong;Kim, Jeong-Hwan;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.302-314
    • /
    • 2000
  • Keumseong area in the southern part of the Jecheon city, the Ogcheon Belt, consists of Precambrian Dangdusan Metamorphic Complex, Dori Formation of the Choseon Supergroup, and Jurassic Jecheon Granite. The Dangdusan Metamorphic Complex consists of quartz schist, mica schist. quartzite and pegmatite. The Dori Formation is composed of mainly laminated limestone. The rocks in the study area have been undergone at least three phases of deformations since Paleozoic period. The Dangdusan Metamorphic Complex is outcrop at three areas in the study area, which are exposed along the faults and occurred as inlier within the Dori Formation. Previous authors interpreted the uplift of the Dangdusan Metamorphic Complex by the Dangdusan Fault, but we could not find any evidences related to the Dangdusan Fault. Thus, we interpret the uplift of the Dangdusan Metamorphic Complex due to the D$_2$ Weolgulri and Dangdusan thrusts and post-D$_2$ Jungbodeul, Kokyo and Jungjeonri faults. The uplift of the Busan Metamorphic Complex to the west of the study area was interpreted by ductile deformation. However, the Dangdusan Metamorphic Complex is formed by brittle thrusts and faults in this study. According to deformation sequence, the characters of deformations in the Choseon and Ogcheon suprergroups had been changed from ductile to brittle deformations through the time. Therefore, we interpret the Dangdusan Metamorphic Complex is exposed later than the Busan Metamorphic Complex.

  • PDF

Metamorphism of gneiss complex in the Paju-Gimpo area, northwestern Gyeonggi massif, Korea (경기육괴 북서부의 파주-김포지역에 분포하는 편마암복합체의 변성작용)

  • Ahn, Kun-Sang;Park, Young-Seog;Kim, Cheong-Bin;Chen, Jiangfeng
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.177-189
    • /
    • 1998
  • Proterozoic gneisss complex of the Paju-Gimpo area, Northwestern Gyeonggi Massif, consists of mainly gneiss and schist with locally intercalated quartzite and metamorphic calcareous rocks. Mineral assemblages of the gneiss and schist are classified into two type: sillimanite free (garnet zone) and sillimanite bearing (sillimanite zone) assemblages. In the Goyang area, Kyanite occurs as metastable relict grain in two gneiss samples, in which sillimanite, garnet, biotite, K-feldspar and plagioclase occur. Cordierite bearing mineral assemblages of gneiss are biotite+garnet+sillimanite+cordierite+plagioclase+quartz ($\pm$K-feldspar, muscovite), and represent the upper amphibolite or granulite facies metamorphism. The metamorphic complex has experienced two different regional metamorphism. The prograde metamorphism is a medium-pressure type characteries by kyanite. The peak metamorphic P-T condition of the prograde metamorphism calculated from the kyanite bearing rock is 7.0~9.4 kb and $718~778^{\circ}C$. The retrograde metamorphism, after the prograde metamorphism, is the low-pressure type characteries by occurrence of cordierite. The peak metamorphic P-T condition of later calculated from the cordierite bearing rock is 3.6~5.5 kb and $750~889^{\circ}C$. Together with the occurrence of relict kyanite, garnet+biotite+plagioclase assemblage as relict in the cordierite, and the result of estimated P-T metamorphic conditions indicate a clockwise P-T path.

  • PDF

Application of geophysical exploration for gold in the YongJang mine, Masan (마산 용장광산에서 금광에 대한 물리탐사의 적용)

  • Park, Jong-Oh;Song, Moo-Young;Park, Chung-Hwa;You, Young-June
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.213-219
    • /
    • 2006
  • The Yongjang mine is located in Masan City, Gyeongsangnamdo, which consists of a black shale possessing quartzite veins with othercompositions such as gold, silver, and sublimated sulfur. The average width of the veins is $9{\sim}17cm$ and the average degrees of the gold and silver are 3.6 g/t and 113.6 g/t respectively. A regional and a detailed scale electrical resistivity surveys are conducted to determine the existence of the mineralization zones and the linear structures in the study area. In addition, surveys of a several different array methods are conducted such as dipole-dipole array in the surface and borehole-to-surface array, surface-to-borehole array, and dipole-dipole array in the borehole. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Yongjang vein is extended longer under the subsurface than on the surface in the images reconstructed from the 3D inversion. Therefore, it is recognized that the 3-D interpretation of the electrical resistivity survey is a very useful method to figure out the existence of strike and extension direction because the mineralization zones and the linear structures are shown in each depth.

  • PDF

Granulite-facies metamorphism and P-T evolutionary path of cordierite gneisses in the Cheongpyeong-Yangpyeong area (청평-양평 지역에 분포하는 근청석 편마암의 백립암상 변성작용과 P-T 진화 경로)

  • 조윤호;조문섭;이승렬
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.52-65
    • /
    • 1996
  • Precambrian metamorphic rocks of the Cheongpyeong-Yangpyeong area, central Gyeonggi massif, comprise gneiss, schist, quartzite and amphibolite. Mineral, assemblages of pelitic gneisses are characterized by biotite + cordierite + garnet + sillimanite + K-feldspar + plagioclase + quartz together with minor muscovite, spinel and corundum, and represent the granulite facies metamorphism. In particular, kyanite occurs as fine-grained relict phase inside plagioclase of three gneiss samples. Metamorphic conditions are estimated from garnet-biotite and garnet-cordierite geothermometers in conjunction with garnet-$Al_2SiO_5$-quartz-plagioclase (GASP) and garnet-rutile-$Al_2SiO_5$-ilmenite (GRAIL) geobarometers. They are 700-$850^{\circ}C$ and 3.2-8.3 kbar, and 580-$690^{\circ}C$ and 2.1-3.2 kbar, respectively, when the core and rim compositions of garnet are use. Garnet of the GASP assemblage increases rimward in the Fe and Mn contents but decreases in the Mg content, whereas its Ca content does not vary significantly. Together with the occurrence of relict kyanite and the result of P-T estimates, compositional zoning patterns of garnet indicate a clockwise P-T history. Moreover, the preservation of high-pressure minerals such as kyanite in plagiocalse, even after the medium-pressure granulite facies metamorphis, suggests a rapid change in P-T conditions.

  • PDF

Occurrence and petrochemistry of the granites in the Pocheon-Euijeongbu area (포천-의정부 일대에 분포하는 화강암류의 산상과 암석화학)

  • 윤현수
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.91-103
    • /
    • 1995
  • The study area is located at the middle part of Daebo granitic batholith in the Gyeonggi massif. The geology of the area is mostly composed of Precambrian gneiss complex, coarse- grained middle Jurassic and fine-grained early Cretaceous biotite granites, and Cretaceous small stocks and dykes. The gneiss complex consists mainly of banded gneiss, granitc gneiss, some schist and quartzite. The coarse-grained granite can be divided into greyish granite(Gg1 in the margin and slightly pinkish granite(Gp) in the center. The former is hornblende biotite granite characterized by basic clot and xenolith. The latter is generally garnet biotite granite containing only poor basic clot. The fine-grained granite intruded the coarse-grained granite. The K/Ar biotite ages from the granites belong to middle Jurassic and early Cretaceous. The K/Ar biotite ages and geochemical compositions indicate that Gg and Gp were differenciated from a single magmatic body. The granites are calc-alkali and metaluminous-peraluminous. They are S-type(i1menite series) and partly I-type granitedmagnetite series) formed by melting of relatively fixed source composition. Their tectonic settings belong to the compressional suits and VAG of continental margin.

  • PDF

SHRIMP U-Pb Ages of Detrital Zircons from Metasedimentary Rocks in the Yeongheung-Seonjae-Daebu Islands, Northwestern Gyeonggi Massif (경기육괴 북서부 영흥도-선재도-대부도에 분포하는 변성퇴적암 내 쇄설성 저어콘의 SHRIMP U-Pb 연대)

  • Na, Jun-Seok;Kim, Yoon-Sup;Cho, Moon-Sup;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.31-45
    • /
    • 2012
  • We investigated the various lithologies and zircon U-Pb ages of metasedimentary rocks from the Yeongheung-Seonjae-Daebu Islands, western Gyeonggi Massif, whose geologic and geochronologic features are poorly constrained in spite of their significance for tectonic interpretation. Major lithology consists of quartzites or meta-sandstones commonly alternating with semi-pelitic schists, together with lesser amounts of calcareous sandstones with matrix-supported quartzite clasts, calcareous schists, and pelitic schists. Pelitic schists uncommonly contain large porphyroblasts of garnet as well as quartz veins with large crystals of muscovite and andalusite or kyanite. SHRIMP U-Pb ages of detrital zircons from two analyzed metasandstones define four age populations: Neoarchean (~2.5 Ga), Paleoproterozoic (~2.0-1.5 Ga), Neoproterozoic (~1.1-0.7 Ga), and Early Paleozoic (~560-400 Ma). The youngest zircon ages are clustered at ~420 Ma. These results suggest that the deposition of meta-sandstones took place after the Silurian, possibly during the Devonian, and are analogous to those of the Taean Formation reported from the western part of the Gyeonggi Massif. Moreover, The age distribution patterns of detrital zircons and the Barrovian-type metamorphic facies of pelitic schists are similar to those reported from the Imjingang belt, suggesting that the Taean Formation likely corresponds to southwestward extension of the Imjingang Belt.

Geology and Constituent Rocks, and Radioactive Values of the Eoraesan Area, Chungju, Korea (충주 어래산지역의 지질 및 구성암류와 방사능 값)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Koh, Sang-Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 2018
  • The Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks are distributed in the Eoraesan area, Chungju which is located in the northwestern part of Ogcheon metamorphic zone, Korea, and the rare earth element (REE) mineralized zone has been reported in the Gyemyeongsan Formation. We drew up the detailed geological map by the lithofacies classification, and measured the radioactivity values of the constituent rocks to understand the distribution and characteristics of the source rocks of REE ore body in this paper. It indicates that the Neoproterozoic Gyemyeongsan Formation is mainly composed of metapelitic rock, granitic gneiss, iron-bearing quartzite, metaplutonic acidic rock (banded type, fine-grained type, basic-bearing type, coarse-grained type), metavolcanic acidic rock, and the Mesozoic igneous rocks, which intruded it, are divided into pegmatite, biotite granite, gabbro, diorite, basic dyke. The constituent rocks of Gyemyeongsan Formation show a zonal distribution of mainly ENE trend, and the distribution of basic-bearing type of metaplutonic acidic rock (MPAR-B) is very similar to that of the previous researcher's REE ore body. The Mesozoic biotite granite is regionally distributed unlike the result of previous research. The radioactive value of MPAR-B, which has a range of 852~1217 cps (average 1039 cps), shows a maximum value among the constituent rocks. The maximum-density distribution of radioactive value also agrees with the distribution of MPAR-B. It suggests that the MPAR-B could be a source rock of the REE ore body.

Properties of Modified Belite Cement with the Content of Clinker Minerals (클링커 광물 함량 변화시 Modified belite Cement의 특성)

  • 최연묵;이양수;김남호;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.479-485
    • /
    • 1998
  • Raw mateials such as limestone quartzite bauxite and anhydrite were used in the production of mod-ified beloite cement. Two kinds of clinker were synthesized with relatively higher content of $C_2S$ than that of $C_4A_3{\={S}}$ Concerning $C_2S$ the main mineral component borax ($Na_2O\;2B_2O_3\;10H_2O$) was added to stimu-late hydraulic reactivity and this would be possible by stabilizing ${\alpha}'-C_2S$ at room temperature. We had in-tended to compare burning and hydraulic characteristics of clinkers with one another by varying the amount of borax addition and to study the appropriate amount of anhydrite addition needed in the strengthening of cement during hydration. It was concluded that the effective amount of borax addition ne-eded for stabilization of ${\alpha}'-C_2S$ was 5 wt% in 60wt% $C_2S$ inclusive clinker and adding anhydrite in the ra-tio of 1.3 of $SO_3/Al_3O_3$ was appropriate in the production of cement by this clinker. Only ettringite was seen to contribute to the strength without additives but C-S-H was found to form along with ettringite with the addition of borax in the initial stage of hydration.

  • PDF

Comparative Studies between Chungju and Seosan Groups (충주층군(忠州層群)과 서산층군(瑞山層群)의 비교연구(比較硏究))

  • Na, Ki Chang;Kim, Hyung Shik;Lee, Dong Jin;Lee, Sang Hun
    • Economic and Environmental Geology
    • /
    • v.15 no.4
    • /
    • pp.177-188
    • /
    • 1982
  • The Chungju and Seosan Groups have been known usually as Precambrian formations in Korea. But their relative and absolute ages have been controvericial problem in relation with other geologic system such as so-called Ogcheon and Yeoncheon Systems in Korea. This study has mainly focused on the corelation of the Chungju Group with the Seosan Group in their stratigraphy, structure, metamorphism, and iron ore deposits. In the process of study, the auther surveyed and reclassified the Chungju and Seosan Groups and corelated with Gyeonggi and Ogch cheon metamorphic belts and got some new data. The Chungju iron-bearing formations showing transtitional relation with the Gyeonggi Gneiss Complex and the Jangamri Formation consisting mainly of pebble bearing calcarious phyllite, should be seperated from the Gyemyeongsan formation which is mainly composed of metavolcanic rocks. The Jangamri Formation and the coaly phyllite, which can be corelated respectively with the Hwaggangri Formation and Changri Formation in Ogcheon Group, are repeated in the Gyemyeonsan and Munjuri Formations with the overturned anticlinal folding(F1). So the Chungju Group which was defined as an indipendant geologic unit from the Ogcheon Group should be limited only on the Chungju iron Formation. The Seosan Group can be classified stratigraphically such as Seosan Formation consisting of iron-bearing quartzite and mica schist, Daesan Formation overlying unconformably on the Seosan Formation and Gyeonggi Gneiss Complex. Taean Formation overlying unconformably on the Daesan Formation should be seperated from Seosan Group. There are many similarity in the stratigrphy, structure, and metamorphic facies between Chungju and Seosan Groups exept the metavolcanic rocks in the Gyemyeongsan and Munjuri Formations and the pebble bearing calcareous phyllite in the Jangamri Formation. The two Groups were deformed with two kinds of differant stages, the first shows $N30^{\circ}-40^{\circ}E$ trend of fold axis, the second $N70^{\circ}-80^{\circ}W$ respectively. The Seosan Formation, which is the lowest formation in Seosan Group and bearing the iron formation, was metamorphosed at 2500 m. y. before. These age is similar with the metamorphic age of Gyeonggi metamorphic belt and with the age of Algoman and Kenoran Orogenies which devide the Precambrian into Archean and Proterozoic Era. So the Seosan Formation, which is included in some migmatitic rocks of Gyeonggi Gneiss Complex, is the oldest formation in Korea and can be corelated with the Anshan Group which bears the oldest iron formation in China. The metamorphic facies of the Precambrian metamorphism in Seosan area is simillar with that of Chungju area, showing high temperature-low pressure amphibolite facies which is corelated with the Gyeonggi metamorphic belt, the oldest metamorphic belt in Korea ($650^{\circ}-680^{\circ}C$, 3.2-4.4 Kb). The high temperature intermediate pressure amphibolite facies in Seosan area with the low temperature-intermediate presure greenschist facies of Taean formation is corelated with that of Ogcheon Group ($590^{\circ}-640^{\circ}$ C, 5.2-6.3 Kb). The Chungju and Seosan iron formations were deposited in Archean, showing geochemical composition of Precambrian iron formations. The Chungju iron formation was mainly formed by the chemical precipitation, on the other hand, the Seosan iron formation was formed by alternated action of chemical and detrital depositions.

  • PDF