• Title/Summary/Keyword: quartz vein

Search Result 156, Processing Time 0.025 seconds

Sulfide MINERALs texture AT THE HUGO DUMMETT PORPHYRY Cu-Au DEPOSIT, OYU TOLGOI, MONGOLIA

  • Myagmarsuren, Sanjaa;Fujimaki, Hirokazu
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.99-102
    • /
    • 2008
  • Mineralogical studies of ore and alteration minerals have been conducted for the Hugo Dummett porphyry copper deposit. The Hugo Dummett porphyry copper gold deposit is located in the South Gobi region, Mongolia and currently being explored. This deposit divided into the Cu-rich Hugo Dummett South and the Cu-Au-rich Hugo Dummett North deposits. The Hugo Dummett deposits contain 1.08% copper(1.16 billion tonnes in total) and 0.23 g/t gold(Oyunchimeg et al., 2006). Copper-gold mineralization at these deposit are centered on a high-grade copper(typically>2.5%) and gold(0.5-2 g/t) zone of intense quartz stockwork veining. The high grade copper and gold zone is mainly within the Late Devonian quartz monzodiorite intrusions and augite basalt, also locally occurs in dacitic rocks. Intense quartz veining forms a lens up to 100 m wide hosted by augite basalt and partly by quartz monzodiorite. Although many explorations have been carried out, only a few scientific works were done in the Oyu Tolgoi mining area. Therefore the nature of copper-gold mineralization and orgin of the deposit is not fully understood. Copper-gold mineralization in the Hugo Dummett deposits occurs in dominantly quartz monzodiorite and minor augite basalt, dacitic rocks and locally biotite granodiorite. Chalcopyrite, pyrite, bornite, molybdenite, tennantite, tetrahedrite, enargite, sphalerite, chalcocite, covellite, eugenite, galena and gold occur as main ore minerals in the Hugo Dummett North and South deposits. These sulfides occur as: (1) a vague vein-like trail 1-3cm long and 2-3 mm wide, (2) minute, discontinuous cracks within quartz(micron scales), and (3) irregular blebs/spots(micron scales)and (4) disseminated within the sericite and plagioclase, commonly concentrated in the quartz. Sulfide minerals commonly display as a replacement, intergrown and minor exsolution texture in the both of the Hugo Dummet deposits.

  • PDF

Study on Fluid Inclusions in Fluorite from the Sinpo Mine (신포광산(新浦鑛山) 형석(螢石)의 유체포유물(流體包有物에)에 관(關)한 연구(硏究))

  • Lee, Choon Woo
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.1-21
    • /
    • 1969
  • The Sin po fluorite deposit is of a fissure vein type which strikes $N75^{\circ}E$, dips $80^{\circ}SE$, and is embedded in the pre-Cambrian crystalline schist. The vein is 1 meter in average in thickness, about 800 meters in length and nearly 400 meters in depth. Narrow veins of crustified fluorites and agatic quartz are discontinuously embedded in the quartz gangue. Two-phase fluid inclusions, which are available for the homogenization method by using the Heating Stage Microscope 350, are found in the fluorite crystals. Most of the fluid inclusions are primary in origin and mainly composed of liquid phase associated with minor gas phase. They are tetrahedral, rounded-tubular, wedge shaped, rectangulartrapezoid, and irregular in shape. The maximum diameter of inclusions is 0.5mm and the minimum, 0.03mm, ranging from 0.2mm to 0.08mm in an average. The homogenization temperatures obtained from the test are $135-147^{\circ}C$, $125-138^{\circ}C$, $121-137^{\circ}C$, $116-133^{\circ}C$ and $106-128^{\circ}C$ in greenish, bluish, violet, light grayish blue, colorless and pinkish fluorites respectively. The range of formation temperatures of fluorites is $106-147^{\circ}C$. Therefore, the fluorite deposit of Sinpo Mine is considered to be of low temperature hydrothermal origin. The isothermal lines were drawn on the longitudinal section of the vein from the data of homogenization test. According to the results, the central and lower parts of the ore shoot in the west ore body show the higher temperatures of $130-138^{\circ}C$ and the peripheral and upper parts of it show the lower temperatures of $108-128^{\circ}C$. It seems that the isothermal trend roughly coinside with the pitch of the ore shoot.

  • PDF

Gold-Silver mineals and the chemical environments of some gold-silver deposits, Republic of Korea(I) -Cheongju gold-silver mine- (한국(韓國) 일부(一部) 금(金)·은(銀) 광상(鑛床)에서 산출(産出)되는 금(金)·은(銀) 광물(鑛物)과 광상(鑛床)의 생성조건(生成條件)(I) -청주(淸州) 금(金)·은(銀) 광산(鑛山)-)

  • Lee, Hyun Koo;Choi, Jin Woo
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 1988
  • The Cheongju gold-silver mine is located at approximately $36^{\circ}28^{\prime}$north latitude and $127^{\circ}31^{\prime}$ east longitude in the Cheongju City of the Chung cheong bug Do, South Korea. Gold-Silver bearing hydrothermal quartz veins, occur in Cheongju Granit of Jurassic age. K-Ar isotope data for sericite in quartz vein indicate that the Au-Ag mineralization took place in early Cretaceous ($97.5{\pm}2.18$ MA. Park, et ai, 1986). Three stage of mineralization recognized anre, from early to later, (I) Sulide stage: pyrite, arsenopyrite, pyrrhotite (Hpo), sphalerite, chalcopyrite, electrum and quartz (II) Electrum stage: pyrite, sphalerite, galena, chalcopyrite, electrum and quartz. (III) Silver mineral stage: pyrite, marcasite, pyrrhotite (Mpo), sphalerite, galena, electrum, native silver argentite, fluorite, calcite and quartz. In this paper, mode of occurrences and chemical compositions of electum and native silver have been investigated by means of microscope and EPMA. Electron probe microanalysis shows that an individual grain of electrum is almost homogeneous in composition. Silver content of electrum ranges from 44.7-67.1 atom.%. Gold content of native silver ranges below 0.2 atom. %. Vicker's hardness number (VHN) of electrum and native silver ranges $78.2-81.8kg/mm^{2}$ respectively. The filling temperature of fluid inclusions in quartz ranges from $130-280^{\circ}C$. On the basis of arsenpyrite geothemometer, the equilibrium temperature and sulfur fugacity of the pyrite-arsenopyrite-pyrrhotite(Hpo) assemblage is assumed to be in ange from $300-310^{\circ}C$ and $10^{-10}$ to $10^{-11}$ atm. The estimated ore reserviors on Cheongju mine area are calculated to 8000 T/M, averaing 8.6g/t Au, 27.8 g/t Ag, 1.25% Pb, l.65% Zn.

  • PDF

Occurrence and Chemical Composition of Dolomite and Chlorite from Xiquegou Pb-Zn Deposit, China (중국 Xiquegou 연-아연 광상의 돌로마이트와 녹니석 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.125-140
    • /
    • 2022
  • The Xiquegou Pb-Zn deposit is located at the Qingchengzi orefield which is one of the largest Pb-Zn mineralized zone in the northeast of China. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Xiquegou deposit which is a Triassic magma-hydrothermal type deposit occurs as vein ore filled fractures along fault zone in unit 3 (dolomitic marble and schist) of Dashiqiao formation of the Paleoproterozoic Liaohe group. Xiquegou Pb-Zn deposit consists of quartz, apatite, calcite, pyrite, arsenopyrite, pyrrhotite, marcasite, sphalerite, chalcopyrite, stannite, galena, tetrahedrite, electrum, argentite, native silver and pyrargyrite. Wallrock alteration of this deposit contains silicification, pyritization, dolomitization, chloritization and sericitization. Based on mineral petrography and paragenesis, dolomites from this deposit are classified two type (1. dolomite (D0) as wallrock, 2. dolomite (D1) as wallrock alteration in Pb-Zn mineralization quartz vein ore). The structural formulars of dolomites are determined to be Ca1.03-1.01Mg0.95-0.83Fe0.12-0.02Mn0.02-0.00(CO3)2(D0) and Ca1.16-1.00Mg0.79-0.44Fe0.53-0.13Mn0.03-0.00As0.01-0.00(CO3)2(D1), respectively. It means that dolomites from the Xiquegou deposit have higher content of trace elements compared to the theoretical composition of dolomite. The dolomite (D1) from quartz vein ore has higher content of these trace elements (FeO, PbO, Sb2O5 and As2O5) than dolomite (D0) from wallrock. Dolomites correspond to Ferroan dolomite (D0), and ankerite and Ferroan dolomite (D1), respectively. The structural formular of chlorite from quartz vein ore is (Mg1.65-1.08Fe2.94-2.50Mn0.01-0.00Zn0.01-0.00Ni0.01-0.00Cr0.02-0.00V0.01-0.00Hf0.01-0.00Pb0.01-0.00Cu0.01-0.00As0.03-0.00Ca0.02-0.01Al1.68-1.61)5.77-5.73(Si2.84-2.76Al1.24-1.16)4.00O10(OH)8. It indicated that chlorite of quartz vein ore is similar with theoretical chlorite and corresponds to Fe-rich chlorite. Compositional variations in chlorite from quartz vein ore are caused by mainly octahedral Fe2+ <-> Mg2+ (Mn2+) substitution and partly phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV).

Microscopic Study of Sangdong Tungsten Ore Deposit, Korea (상동중석광상(上東重石鑛床)의 현미경적(顯微鏡的) 연구(硏究))

  • Lee, Dai Sung;Kim, Suh-Woon
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1969
  • In the Sangdong Mine area, Taebaegsan series (Pre-Cambrian) and Chosun System (Cambro-ordovician) are widely distributed. The Chosun System consists of Yangdug Series (Jangsan Quartzite and Myobong Slate) and The Great Limestone Series (Pungchon Limestone, Shesong Shale, Hwajeol Formation and Dongjeom Quartzite). The mineralized zone containing the main ore body of the Sangdong Mine was developed in the Myobong Slate formation. The result of the field and microscopic study on the mineral paragenesis and it's wall rock alteration in the tungsten ore deposit shows the following features. The orogenic movements of the Post-Chosun System in the Hambaeg Geosyncline are closely related to the tungsten ore deposition in the area, the ore minerals are composed mainly of scheelite, powelite molybdenite and sulfide minerals, and gangue minerals are hornblende, diopside, garnet, quartz, phlogopite, tremolite, biotite, muscovite, fluorite, etc., main ore body was enriched by scheelite bearing quartz vein filling into interstices of formerly mineralized zones, and the minor faults, faults of N $60^{\circ}-70^{\circ}W$, $45^{\circ}-60^{\circ}NE$ and joints, which were formed at the end of the mineralization and the slate. Country rock of the ore body was altered into the following several zones from the outside to the inside; lowgrade recrystalline aureole, silicified sericite zone, and diopside-hornblende zone. Under the microscopic observation of 195 samples taken from throughout ore body can be classified into 10 different groups by their mineral paragenesis as shown in table 2. The garnet-diopside group is primary skarn and it shows gradational change to the groups of later stage by the successive processes of metasomatism. From the stage of quartz-bearing group, the dissemination of scheelite is seen. The crystallization of scheelite in the bed started with the quartz deposition and continued to the last stage when quartz vein intruded into the main ore body. In the field and the under ground investigation a durable limestone bed in thickeness about 20 meters and their remnants in ore body are observed and under microscope calcite remnants are recognized. Hence it is posturated that the ore material moved up through the faults, shear zones or feather cracks and was assimilated with the interbeded limestone, after that the body was affected by the successive differentiated ore solution by gradational increasing in $SiO_2$, $K_2O$ and $H_2O$. Evidently this ore deposit shows the features resulted from pyrometasomatic processes.

  • PDF

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

White Mica and Chemical Composition of Samdeok Mo Deposit, Republic of Korea (삼덕 Mo 광상에서 산출되는 백색운모 및 화학조성)

  • Yoo, Bong Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.223-234
    • /
    • 2019
  • The geology of the Samdeok Mo deposit consists of Paleozoic Hwajeonri formation, Kowoonri formation, Suchangri formation, Iwonri formation, Hwanggangri formation, Cretaceous, leucocratic porphyritic granite and granitic porphyry. This deposit consists of three quartz veins that filled NS oriented fractured zones in Suchangri formation. Quartz veins vary from 0.05 m to 0.3 m in thickness and extend to about 400 m in strike length. Quartz veins occur as massive, breccia, and cavity textures. Wallrock alteration has silicification, sericitization, argillitization and chloritization. The mineralogy of the quartz veins consists of quartz, fluorite, white mica, biotite, apatite, monazite, rutile, ilmenite, molybdenite, chalcopyrite, Fe-Mg-Mn oxide and Fe oxide. White mica from Samdeok Mo deposit occurs as fine or coarse grains in quartz vein and hostrock and has four mineral assemblages (I type: quartz, molybdenite, Fe oxide and Fe-Mg-Mn oxide, II type: quartz, Fe oxide and Fe-Mg-Mn oxide, III type: quartz and biotite, and IV type: quartz). The structural formular of white mica from quartz vein is $(K_{0.89-0.60}Na_{0.05-0.00}Ca_{0.01-0.00}Sr_{0.02-0.00})_{0.94-0.62}(Al_{1.54-1.12}Mg_{0.36-0.18}Fe_{0.26-0.09}Mn_{0.04-0.00}Ti_{0.02-0.00}Cr_{0.02-0.00}Zn_{0.01-0.00})_{1.91-1.72}(Si_{3.40-3.11}Al_{0.92-0.60})_{4.00}O_{10}(OH_{1.68-1.42}F_{0.58-0.32})_{2.00}$, but white mica of I type has higher FeO content, and lower $SiO_2$ and MgO contents than white micas of other types. Also, compositional variations in white mica from the Samdeok Mo deposit are caused by phengitic or Tschermark substitution ($(Al^{3+})^{VI}+(Al^{3+})^{IV}{\leftrightarrow}(Fe^{2+}{\text{ or }}Mg^{2+})^{VI}+(Si^{4+})^{IV}$) and direct $(Fe^{3+})^{VI}{\leftrightarrow}(Al^{3+})^{VI}$ substitution.

Characteristics of Lode Development and Structural Interpretation for the High Au Contents within the Fault Gouge Zones in Jinsan Au Mine, Chungcheongnam-do (충남 금산 진산금광산의 광맥 발달특성과 단층점토에 농집된 고품위 금함량에 대한 구조지질학적 해석)

  • Shin, Dongbok;Gwon, Sehyeon;Kim, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.103-114
    • /
    • 2015
  • Jinsan gold deposit is a hydrothermal vein type deposit consisting of several fissure filling quartz veins developed within the Changri Formation of the Ogcheon Supergroup in Geumsan, Chungnam. This study is to provide an efficient exploration and development strategies based on the characteristics of the geology, geological structure, core logging, and ore vein occurrence and grade for the four pits (New pit, Main pit, Yanghapan pit and Teugho pit). Quartz veins are mostly developed with the strike of $N10^{\circ}-25^{\circ}W$ and $N5^{\circ}-20^{\circ}E$, and the thickness is in the range of 0.1~0.5 m, sometimes extending to over 1m. Although the quartz veins commonly form massive shape, they sometimes show zonal structure, comb structure as well as brecciated texture. Major ore minerals are pyrite and chalcopyrite, and pyrrhotite, sphalerite, galena, marcasite, electrum and chalcocite are also accompanied as minor phases. Gray and milky white quartz veins, which are occasionally crosscut by calcite vein, also include fluorite. Ore evaluations for the 22 samples revealed that the samples from the pits generally have very low Au contents, lower than 1 g/t, but some clay samples of drilled core show very high Au concentrations, up to 141 g/t, indicating that Au content is much higher within fault gouges rather than within fresh quartz veins. This may represent that gold might have been reworked and reprecipitated by hydrothermal fluids in association with reactivation of the faults, and thus suggest that ore occurrence in this deposit is very complex and irregular and therefore more precise and systematic exploration is required.

Stable Isotopes of Ore Bodies in the Pacitan Mineralized District, Indonesia (인도네시아 파찌딴 광화대 함 금속 광체의 안정동위원소 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • Extensive base-metal and/or gold bearing ore mineralizations occur in the Pacitan mineralized district of the south western portions in the East Java, Indonesia. Metallic ore bodies in the Pacitan mineralized district are classified into two major types: 1) skarn type replacement ore bodies, 2) fissure filling hydrothermal ore bodies. Skarn type replacement ore bodies are developed typically along bedding planes of limestone as wall rock around the quartz porphyry and are composed mineralogically of skarn minerals, magnetite, and base metal sulfides. Hydrothermal ore bodies differ mineralogically in relation to distance from the quartz porphyry as source igneous rock. Hydrothermal ore bodies in the district are porphyry style Cu-Zn-bearing stockworks as proximal ore mineralization and Pb-Zn(-Au)-bearing fissure filling hydrothermal veins as distal ore mineralization. Sulfur isotope compositions in the sulfides from skarn and hydrothermal ore bodies range from 6.7 to 8.2‰ and from 0.1 to 7.9‰, respectively. The calculated ${\delta}^{34}S$ values of $H_2S$ in skarn-forming and hydrothermal fluids are 0.9 to 7.1‰ (5.6-7.1‰ for skarn-hosted sulfides and 0.9-6.8‰ for sulfides from hydrothermal deposits). The change from skarn to hydrothermal mineralization would have resulted in increased $SO_4/H_2S$ ratios and corresponding decreases in ${\delta}^{34}S$ values of $H_2S$. The calculated ${\delta}^{18}O$ water values are: skarn magnetite, 9.6 and 9.7‰; skarn quartz, 6.3-9.6‰; skarn calcite, 4.7 and 5.8‰; stockwork quartz, 3.0-7.7‰; stockwork calcite, 1.2 and 2.0‰; vein quartz, -3.9 - 6.7‰. The calculated ${\delta}^{18}O_{water}$ values decrease progressively with variety of deposit types (from skarn through stockwork to vein), increasing paragenetic time and decreasing temperature. This indicates the progressively increasing involvement of isotopically less-evolved meteoric waters in the Pacitan hydrothermal system. The ranges of ${\delta}D_{water}$ values are from -65 to -88‰: skarn, -67 to -84‰; stockwork, -65 and -76‰; vein, -66 to -88‰. The isotopic compositions of fluids in the Pacitan hydrothermal system show a progressive shift from magmatic hydrothermal dominance in the skarn and early hydrothermal ore mineralization periods toward meteoric hydrothermal dominance in the late ore mineralization periods.

Mineralogy and Ore Geneses of the Daebong Gold-Silver Deposits, Chungnam, Korea (충남(忠南) 대봉(大鳳) 금(金)·은광상(銀鑛床)에서 산출(産出)되는 광석광물(鑛石鑛物)과 광상(鑛床)의 생성환경(生成環境))

  • Lee, Hyun Koo;Yoo, Bong-Cheal;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.297-316
    • /
    • 1992
  • The Daebong gold-silver deposits is located in 8 km southwest of Cheongyang, Chungcheongnam-Do, Republic of Korea. The gold-silver-bearing hydrothermal quartz veins was formed within the Precambrian metasediments of Gyeonggi massif. Ore minerals occur as mainly of pyrite, sphalerite (0.78~6.19 wt.% Cd), galena, pyrrhotite and minor amounts of chalcopyrite, arsenopyrite, magnetite, ilmenite, chalcocite, electrum (55.00~89.55 wt.% Au) and argentite. The gangue minerals are quartz, calcite, chlorite, K-feldspar, biotite. Wall-rock alterations such as chloritization, silicification, pyritization, carbonatization and sericitization can be observed near the quartz veins. According to the mineral paragenetic sequence based on vein structure and mineral assemblages, three stage mineralizations can be recognized. Fluid inclusion, sulfur isotope and thermodynamic data show that the ore minerals were dominantly deposited at the between 388 and $204^{\circ}C$ from fluids with salinities of 8.1~0.3 wt.% equivalent NaCl, and sulfur isotope value 4.84 to 6.40 per mil of sulfides indicates igneous sources of sulfur in the hydrothermal system and fluid inclusion salinity data suggest that thermal fluids may have magmatic origin with some degree mixing of meteoric water.

  • PDF