• Title/Summary/Keyword: quartz powder

Search Result 108, Processing Time 0.02 seconds

Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.481-492
    • /
    • 2017
  • The aim of this paper is to investigate the effect of quartz powder (Qp), quartz sand (Qs), and different water curing temperature on mechanical properties including 7, 14, 28-day compressive strength and 28-day splitting tensile strength of Ultra High Performance Concrete and also finding the correlation between these variables on mechanical properties of UHPC. The response surface methodology was monitored to show the influences of variables and their interactions on mechanical properties of UHPC, then, mathematical models in terms of coded variables were established by ANOVA. The offered models are valid for the variables between: quartz powder 0 to 20% of cement substitution by cement weight, quartz sand 0 to 50% of aggregate substitution by crushed limestone weight, and water curing temperature 25 to $95^{\circ}C$.

Fabrication of lab-on-a-chip on quartz glass using powder blasting (파우더 블라스팅을 이용한 Quartz Glass의 Lab-on-a-chip 성형)

  • Jang, Ho-su;Park, Dong-sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.14-19
    • /
    • 2009
  • Micro fluid channels are machined on quartz glass using powder blasting, and the machining characteristics of the channels are experimentally evaluated. The powder blasting process parameters such as injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns affect machining results. In this study, the influence of the number of nozzle scanning, abrasive particle size, and blasting pressure on the formation of micro channels is investigated. Machined shapes and surface roughness are measured, and the results are discussed. Through the experiments and analysis, LOC are ettectinely machined on quartz glass using powder blasting.

  • PDF

De-soda Process Using Silica for Fabrication of Low Soda Alumina Powder

  • Park, Sang-Chun;Kim, Dae-Woong;Heo, In-Woong;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.192-196
    • /
    • 2015
  • Low soda alumina powder was fabricated using silica (${\alpha}$-quartz) as an agent for removing soda components in the alumina. Quartz powder 2 mm in size was added to aluminum hydroxide obtained through the Bayer process, and then the mixture was heated at various temperatures. Finally, the heat-treated powders were sieved for classification. In this study, the effects of the quartz amount and heating temperature on the mechanism of removing soda were examined. A minimum soda content of 0.005 wt% was observed at the conditions of 15 wt% quartz (based on $Al(OH)_3$ amount) heat-treated at $1600^{\circ}C$ for 8 h. The soda components, such as $Na_2O$, NaOH, and $Na_2CO_3$, in alumina were ionized and activated at high temperature, and this facilitated the reaction with quartz silica and alumina producing nepheline. The advantages of using quartz include low iron content and low cost in comparison with the conventional de-soda process using chamotte, another silicate mineral.

Magnetic Properties of Activated Quartz Nanocomposite

  • N.N., Mofa;T.A., Ketegenov;Z.A., Mansurov;Soh, Hyun-Jun;Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.78
    • /
    • pp.9-15
    • /
    • 2007
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 1050nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was alsoconfirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed.

Consolidation of Quartz Powder by the Geopolymer Technique

  • Ikeda, Ko;Nakamura, Yoshinori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.120-123
    • /
    • 2000
  • The geopolymer technique may be a future-oriented technology for saving energies and resources. This technique requires 3 fundamental elements so-called filler, hardener and geopolymer liquor being generally an alkaline silicate solution. Quartz powder, water quenched granulated blast furnace slag and sodium silicate solution prepared from $Na_2O\cdot2SiO_2$were chosen for these three elements. After mixing these starting materials in appropriate proportions, monoliths were prepared by casting at room temperature. Strength tests showed the following results for 28d age speciment: 7.9-12.7 MPa in flexural strength and 20.2-32.8 MPa in compressive strength, depending on geopolymer liquor/solid ratio, P/S and fineness of the quartz powders used.

  • PDF

Applicability of Stone Powder Sludge as a Substitute Material for Quartz Sand in Autoclaved Aerated Concrete

  • Kim, Jin-Man;Choi, Se-Jin;Jeong, Ji-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.111-117
    • /
    • 2017
  • Stone powder sludge is a byproduct of the crushed aggregate industry, and most of it is dumped with soil in landfills. The disposal of stone powder sludge presents a major environmental problem. This paper investigates the effects of stone powder sludge on the fluidity, density, strength and micro-structure properties of AAC(autoclaved aerated concrete) samples. Stone powder sludge was obtained from a crushed aggregate factory in order to investigate its applicability as a substitute for quartz sand in AAC. To determine the properties of the AAC samples produced with stone powder sludge, specimens containing different foam ratios were produced. Flow value, density, compressive strength, tensile strength and flexural strength of the samples were tested, and X-ray diffraction (XRD) was performed. The test results indicated that the compressive strength of AAC specimens (F120) with stone powder sludge was higher than that of AAC specimens (Q120) with quartz sand for same foam ratio of 120%. For all XRD diagrams, a higher number of tobermorite peaks was shown for the F120 sample than for the Q120 sample, which may explain the slightly higher strength gain in the F120 sample.

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Decolorization of Rhodamine B Using Quartz Tube Photocatalytic Reactor (석영관 광촉매 반응기를 이용한 Rhodamine B의 색도 제거)

  • Park Young Seek
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.358-365
    • /
    • 2004
  • The photocatalytic oxidation of Rhodamine B(RhB) was studied using photocatalytic reactor filled with module of quartz tube. Module of quartz tube consisted of small quartz tube (inner diameter, 1.5 mm; outer diameter, 3 mm) bundle coated with powder $TiO_2$ and uncoated large quartz tube (inner diameter, 20 mm; outer diameter, 22 mm). Two 30 W germicidal lamp was used as the light source and the reactor volume was 0.5 l. The effects of parameters such as the coating materials and numbers, initial concentration, $H_{2}O_2$ dose and metal deposition (Ag, Pt and Fe) and simultaneous application of $H_{2}O_2$ and metal deposition. The results showed that the initial reaction constant of quartz module coated with powder $TiO_2$ was higher 1.4 time than that of the $TiO_2$ sol and optimum coating number is twice. In order to increase reaction rate, simultaneous application of photocatalytic and photo-fenton reaction using Fe coating and dose $H_{2}O_2$ dose increased reaction rate largely.

Magnetism of Nanocomposite Quartz Powder by use of MCR Method

  • Soh, Deawha;Lim, Byoungjae;Soh, Hyunjun;Mofa, N.N.;Ketegenov, T.A.;Mansurov, Z.A.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.113-116
    • /
    • 2004
  • The materials showing high structure dispersion with functional properties were developed on the quartz base and those were obtained by mechano-chemical reaction technology. Depending on the processing conditions and subsequent applications the materials produced by mechano-chemical reaction show concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm showing magnetic, electrical properties and others. The similarity of the structure of surface layers of quartz particles subjected to mechano-chemical processing and nano-structure cluspol (clusters in a polymer matrics) material was also confirmed by the fact that the characteristics of ferromagnetic quartz of insulating nano-composite powder were changed with time, after its preparing process was completed. The magnetic permeability of the sample was decreasing within first two months down by 15~20 %. Then, the magnetic characteristics were almost stabilized steadily and continuously. The observed changes were related with defective structure of the particles, elastic stress relief, and changes of electron density and magnetic moment in deformation zones. This process of stabilization of the investigated properties could be intensified by the thermal annealing heat treatment in short time period of the nano-composite quartz powders at the temperature ranges of 100~15$0^{\circ}C$.

  • PDF

The Effect of Sintering Temperature on the Synthesis of Quartz glass by Fumed Silica Sintering (Fumed Silica 분말 소결법을 이용한 석영유리 제조에 소결 온도가 미치는 영향)

  • Maeng, J.H.;Yoon, K.H.;Choi, S.C.;Kim, H.J.
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.134-137
    • /
    • 2013
  • The quartz glasses were prepared by fumed silica powders sintering method at $1210^{\circ}C$, $1230^{\circ}C$, $1250^{\circ}C$ in air and the effect of sintering temperature on their properties were investigated. The X-ray diffraction pattern, the OH concentration, the light transmittance, the apparent porosity and the density were analyzed. The transparent quartz glass were obtained above $1230^{\circ}C$. The OH-group and macroscopic pores were removed above $1230^{\circ}C$ and highest density and light transmittance were obtained at $1250^{\circ}C$.