• Title/Summary/Keyword: quarry development

Search Result 23, Processing Time 0.023 seconds

Behavior of sediment from the dam FERGOUG in road construction

  • Benaissa, Assia;Aloui, Zehour;Ghembaza, Moulay S.;Levacher, Daniel;Sebaibi, Yahia
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2016
  • In Algeria, wastes are often stored in such conditions that do not meet standards. Today and more than ever, we really must implement an environmentally management of wastes. Recovery of waste in Algeria has a considerable delay due to the absence of a policy favorable to the development of waste management. But many researchers have shown the possibility to reuse dredged sediments in road construction. Through Europe, recent research works have been already performed on dam sediments. Present study fits into the context of the valorization of dredged sediments from Fergoug dam. They are found in considerable quantities and mainly composed of mineral phases, organic matters and water. The reservoir sedimentation poses problems for the environment and water storage, dredging becomes necessary. Civil engineering is a common way of recycling for such materials. Dredged sediments have not the required mechanical characteristics recommended by the standards as GTR guide (LCPC-SETRA 1992). So as to obtain mechanical performance, dredged sediment can be treated with cement, lime, or replaced materials like quarry sand. An experimental study has been conducted to determine physical and mechanical characteristics of sediments dredged from dam. Then different mixtures of sediment and/or quarry sand with hydraulic binders are proposed for improving the grain size distribution of the mixes. Finally, according these mixtures, different formulations have been tested as alternative materials with dredged sediments.

The Study on Damaged Hanbuk Mountain Range in Gyeonggi-Do (경기도 한북정맥 훼손유형 연구)

  • Seo, Jung-Young;Lee, Yang-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.65-74
    • /
    • 2010
  • This study is for Hanbuk Mountain Range within Gyeonggi province which is to propose the conservation plan by each damage pattern through site survey of the mountain range. The damage patterns are classified by siding, pointing and lining. The total damaged area is 103 areas: The siding pattern is damaged by developing farmland, mineral and quarry mining, dam, large scale development complex and cemetery park; The pointing pattern is including the development of road, transmission tower and way and mountaineering trail; The construction of electricity and communication facility, military facility, mobile communication station, heliport and shelter. The damages by developing road and large scale development complex are the most cause, and military facility, dam and reservoir, and residential area are the main causes, respectively. One of the compromised situation Hanbuk-Mountain Range usage as per section 7 section (18.45%), 12 section (18.45%) is the largest number of compromised has been surveyed, undermine the situation if you look at the usage by the road 25 locations (24.22%), military facilities and dam and reservoir to undermine this 11 established respectively (10.68%) were the most undermine. Therefore, this research propose the conservation plan as follow: first, need to understand, educate and publicize on Hanbuk-Mounatin Range; second, manage through the regulations and ordinance of Gyeonggi province; third build and expand the law for protecting Baekdu-Great Mountain Range.

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.

Development the Test System of Impact Energy Using the Pressure Variation in Closed Vessel for Hydraulic Breaker (밀폐용기내 압력변화를 이용한 유압식 브레이커의 타격에너지 시험법 개발)

  • Lee, Geun-Ho;Lee, Yong-Beom;Lee, Gi-Yong
    • 연구논문집
    • /
    • s.32
    • /
    • pp.45-53
    • /
    • 2002
  • Hydraulic breaker attached excavator generally used for the destroying and disassembling of buildings, crashing road pavement, breaking rocks at quarry and etc. The developed breaker are determined their own destructive force and number of impact by the input hydraulic flow rate and pressure than the operating conditions, In this study, the characteristics of pressure variation in closed vessel is invested for testing the impact energy of hydraulic breaker. To test the impact energy, the test system is designed as a mechanism consisted with a hydraulic cylinder, main base, pressure sensor, LVDT, data acquisition system and etc.. The developed test system is applied to measure the impact energy for hydraulic breaker. The proposed testing method could be applied for conventional impact test and the control system evaluation for hydraulic breakers.

  • PDF

Incorporation of marble waste as sand in formulation of self-compacting concrete

  • Djebien, Rachid;Hebhoub, Houria;Belachia, Mouloud;Berdoudi, Said;Kherraf, Leila
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.87-91
    • /
    • 2018
  • Concrete is the most widely used building material all over the world, because of its many technical and economic qualities. This pressure on the concrete resource causes an intensive exploitation of the quarries of aggregates, which results in a exhaustion of these and environmental problems. That is why recycling and valorization of materials are considered as future solutions, to fill the deficit between production and consumption and to protect the environment. This study is part of the valorization process of local materials, which aims to reuse marble waste as fine aggregate (excess loads of marble waste exposed to bad weather conditions) available in the marble quarry of Fil-fila (Skikda, East of Algeria) in the manufacture of self-compacting concretes. It consists of introducing the marble waste as sand into the self-compacting concrete formulation, with variable percentages (25%, 50%, 75% and 100%) and to study the development of its properties both in fresh state (air content, density, slump flow, V-funnel, L-box and sieve stability) as well as the hardened one (compressive strength and flexural strength). The results obtained showed us that marble wastes can be used as sand in the manufacture of self compacting concretes.

Development of a new explicit soft computing model to predict the blast-induced ground vibration

  • Alzabeebee, Saif;Jamei, Mehdi;Hasanipanah, Mahdi;Amnieh, Hassan Bakhshandeh;Karbasi, Masoud;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.551-564
    • /
    • 2022
  • Fragmenting the rock mass is considered as the most important work in open-pit mines. Ground vibration is the most hazardous issue of blasting which can cause critical damage to the surrounding structures. This paper focuses on developing an explicit model to predict the ground vibration through an multi objective evolutionary polynomial regression (MOGA-EPR). To this end, a database including 79 sets of data related to a quarry site in Malaysia were used. In addition, a gene expression programming (GEP) model and several empirical equations were employed to predict ground vibration, and their performances were then compared with the MOGA-EPR model using the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2) and a20-index. Comparing the results, it was found that the MOGA-EPR model predicted the ground vibration more precisely than the GEP model and the empirical equations, where the MOGA-EPR scored lower MAE and RMSE, 𝜇 and 𝜎 closer to the optimum value, and higher R2 and a20-index. Accordingly, the proposed MOGA-EPR model can be introduced as a useful method to predict ground vibration and has the capacity to be generalized to predict other blasting effects.

Development of the Integrative System to Categorize Damaged Areas for Participatory Restoration by Local Residents (주민참여형 복원을 위한 훼손지의 통합적 유형 구분 체계 개발)

  • Ahn, Tong Mahn;Kim, In Ho;Choi, Hyung Suk;Lee, Jae Young;Lee, Ji Young;Lee, Young;Ryu, Sun Jung;Min, So Young;Yoon, Min Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.2
    • /
    • pp.87-103
    • /
    • 2008
  • Despite its high level of symbolic and ecological values, BaigDooDaeGahn, about 684km long stretch of mountains in the eastern part of Korean peninsular, has been widely destroyed and barely recovered. While Korean government enacted a special law in 2005 to protect these areas and designated about 2,658 $km^2$ as the protection zone in 2007, there were a number of sites inside that had been disturbed by mining, illegal crop cultivations, stone quarry, development of resort facilities, construction of roads, and other human activities. To restore these damaged areas in a sustainable manner, the integrative system to categorize damaged areas for participatory restoration by local residents was suggested by this study. The most distinguished feature of the proposed system was to integrate the existing restoration approach focusing on biophysical conditions into the sustainability-building approach to reactivate socio-economic conditions of local society, called 'restoration of eco-cultural community'. As an entry stage to design the new restoration system including processes and procedures, the damaged areas had to be re-categorized by two characteristics, their physical conditions in terms of possibility of public participatory restoration and the readiness of local society required for pursuing endogenous development. More detailed considerations regarding these two characteristics and three different categories has been suggested and discussed.

A Study of Planning for Sujeong-dong Garden Heritage Maintenance (고산 윤선도 수정동 정원유적 정비에 관한 연구)

  • Kim, Moo-Han;Sung, Jong-Sang
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.12-20
    • /
    • 2015
  • Sujeong-Dong garden heritage is a unique, valuable villa garden constructed by Gosan Yoon Sun-Do during middle Joseon period. However, the site has been faced on damage risk because of the development of near quarry. The purpose of the study is to suggest careful maintenance plan for the valuable Korean traditional garden heritage. For the plan, the study conducts the interview of residents and experts, literature review, the investigation of historical materials, site survey, and the analysis of aerial photography. The results are following: Firstly, the paper divides the site into three types of an excavation area: core, recommend and investigation. Secondly, of remained Gosan's one and remains of unknown contents, it has the plan of vegetation maintenance, safety facilities, pathway maintenance, and service area. Thirdly, it also suggests pathway plan for authentic garden promenade according to the literature of Sanjungsingok(山中新曲), site survey, and interviews with residents and experts. The study has a special meaning for an insightful approach based on the accurate site survey, research, and the consideration of practical use.

A Study of the Laboratory Scale Measurement Technique of P-Wave Velocity for the Assessment of the An isotropy of Engineering Property of Rock (암석의 공학적 이방성 측정을 위한 실험실내 P파 속도 측정기법에 대한 연구)

  • 박형동
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.237-274
    • /
    • 1995
  • This study was focused on the improvement of the measurement technique of P-wave velocity for the assesment of the anisotropy of the engineering property of rock. Samples used were collected from a working quarry within the Carnmenellis granite area on which series of engineering geological data have been accumulated. This study mainly concerned the development of measurement technique at the curved surface of rock, the use of natural honey-based coupling agent and the drying method for rock specimen over $P_2O_5$. According to the results, the range of the P-wave velocity anisotropy in two dimensional plane, fell between 0 and 4.68 (%). The direction where maximum velocity occurred was parallel to the orientation of the maximum in-situ stress. The result showed that P - wave velocity is a useful measure to asses the anisotropy of the engineering property of rock and it is suggested that the improvements adopted here can be applied to the experimental work on the rocks in Korea.

  • PDF

Manufacture of Artificial stone using Wasts Stone and Powder Sludge (폐석 및 석분 슬러지를 활용한 인조석판재의 제조)

  • 손정수;김병규;김치권
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.4-11
    • /
    • 1995
  • The amounts of waste stone and stone powder sludge that occurred in the quarry and processing plant of s stone plates, have been increased with the development of stone industry. The manufactunng process of 따tificial s stone was studied to reduce the outlet of these wastes and utilIze them as raw materials for architecture, interior decoration and art work. In order to compare the properties of artiflcial stone with those of natural building-stone, the physi$\alpha$II properties of artificial stone such as specific gravity, absorption ratio, elastic wave velocity, compressive s strength, tensile strength, shore hardness, elasticity and Poission's ratio were measured. From the mesaured d data of physical properties, it was found that physical propertIes of artificial stone were controlled by homogeneous m mixing ratio of constituents, molding pressure, and amount of binder. Also, from the thermo-gravimetric analysis, it was found that artIfIcial stone manufactured had a good thermal stability up to $300^{\circ}C$. It was concluded that t the optimum conditions for manufacturing process of artificial stone were $200kg/\textrm{cm}^2$ of molding pressure, 12-15 w weight % of binder amounts.

  • PDF