• Title/Summary/Keyword: quantum dot phosphor

Search Result 9, Processing Time 0.031 seconds

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • Kim, Gyeong-Nam;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

Inorganic Phosphor Materials for White LED Display (백색 엘이디 디스플레이를 위한 형광체 재료 기술)

  • Lee, Jung-Il;Ryu, Jeong Ho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8:Eu^{2+}$, $MAlSiN_3:Eu^{2+}$ M-SiON(M=Ca, Sr, Ba), ${\alpha}/{\beta}-SiAlON:Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440-460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

Study on Quantum Dot Components and Their Use in High Color Rendering Lighting (양자점 부품과 이를 활용한 고연색성 조명 연구)

  • Jae-Hyeon Ko
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.95-106
    • /
    • 2024
  • In the 21st century, white light-emitting diodes (LEDs) are widely used as backlighting for liquid crystal displays and as a light source for general illumination. However, white LEDs used in lighting often use a single yellow phosphor on top of a blue LED chip, which lacks the ability to reproduce natural colors in objects under conventional illumination accurately. Recently, researchers have been actively working on realizing high color-rendering lighting by incorporating red quantum dots to improve the spectrum in the long-wavelength band, which is deficient in conventional white LEDs. In particular, how to develop and apply remote quantum dot components to ensure long-term reliability is currently under active research. This paper introduces recent research on remote quantum dot components and the current status of developing high color-rendering lightings with them. Especially, we focus on various factors that are important to consider in optimizing the optical structure of the quantum dot components and discuss the future directions and prospects of research for high color-rendering lighting technology.

Luminescent Characteristics of CdSe Quantum Dot Phosphor Depending on Se Precursor Ratio (Se 전구체 함량 따른 CdSe 양자점 형광체의 발광특성)

  • Eom, Nu Si A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.442-445
    • /
    • 2012
  • The quantum dots (QD) have unique electrical and optical properties due to quantum dot confinement effect. The optical properties of QDs are decided by various synthesis conditions. In a prior QDs study, a study on the QDs size with synthesis condition such as synthesis time and temperature is being extensively researched. However, the research on QDs size with composition ratio has hitherto received scant attention. In order to evaluate the ratio dependence of CdSe crystal, synthesis ratio of Se precursor is changed from 16.7 mol%Se to 44 mol%Se. As the increasing Se ratio, the band gap was increased. This is caused by red shift of emission. We confirmed optical property of CdSe QDs with composition ratio.

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

A review on inorganic phosphor materials for white LEDs (백색 발광다이오드(White LEDs)용 무기형광체 재료의 연구개발 현황)

  • Hwang, Seok Min;Lee, Jae Bin;Kim, Se Hyeon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.233-240
    • /
    • 2012
  • White LEDs (light-emitting diodes) are promising new-generation light sources which can replace conventional lamps due to their high reliability, low energy consumption and eco-friendly effects. This paper briefly reviews recent progress of oxy/nitride host phosphor and quantum dot materials with broad excitation band characteristics for phosphor-converted white LEDs. Among oxy/nitride host materials, $M_2Si_5N_8$ : $Eu^{2+}$, $MAlSiN_3$ : $Eu^{2+}$ M-SiON (M = Ca, Sr, Ba), ${\alpha}/{\beta}$-SiAlON : $Eu^{2+}$ are excellent phosphors for white LED using blue-emitting chip. They have very broad excitation bands in the range of 440~460 nm and exhibit emission from green to red. In this paper, In this review we focus on recent developments in the crystal structure, luminescence and applications of the oxy/nitride phosphors for white LEDs. In addition, the application prospects and current trends of research and development of quantum dot phosphors are also discussed.

A Review of SERS for Biomaterials Analysis Using Metal Nanoparticles (바이오 물질 분석을 위한 금속 나노입자를 이용한 SERS 분석 연구동향)

  • Jang, Eue-Soon
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.281-300
    • /
    • 2019
  • Surface enhanced Raman scattering (SERS) was first discovered in 1974 by an unexpected Raman signal increase from Pyridine adsorbed on rough Ag electrode surfaces by the M. Fleishmann group. M. Moskovits group suggested that this phenomenon could be caused by surface plasmon resonance (SPR), which is a collective oscillation of free electrons at the surface of metal nanostructures by an external light source. After about 40 years, the SERS study has attracted great attention as a biomolecule analysis technology, and more than 2500 new papers and 500 review papers related to SERS topic have been published each year in recently. The advantages of biomaterials analysis using SERS are as follows; ① Molecular level analysis is possible based on unique fingerprint information of biomolecule, ② There is no photo-bleaching effect of the Raman reporters, allowing long-term monitoring of biomaterials compared to fluorescence microscopy, ③ SERS peak bandwidth is approximately 10 to 100 times narrower than fluorescence emission from organic phosphor or quantum dot, resulting in higher analysis accuracy, ④ Single excitation wavelength allows analysis of various biomaterials, ⑤ By utilizing near-infrared (NIR) SERS-activated nanostructures and NIR excitation lasers, auto-fluorescence noise in the visible wavelength range can be avoided from in vivo experiment and light damage in living cells can be minimized compared to visible lasers, ⑥ The weak Raman signal of the water molecule makes it easy to analyze biomaterials in aqueous solutions. For this reason, SERS is attracting attention as a next-generation non-invasive medical diagnostic device as well as substance analysis. In this review, the principles of SERS and various biomaterial analysis principles using SERS analysis will be introduced through recent research papers.

Improving the Color Gamut of a Liquid-crystal Display by Using a Bandpass Filter

  • Sun, Yan;Zhang, Chi;Yang, Yanling;Ma, Hongmei;Sun, Yubao
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • To improve the color gamut of a liquid-crystal display (LCD), we propose a bandpass filter that is added to the backlight unit to optimize the backlight spectrum. The bandpass filter can only transmit red, green and blue light in the visible range, while reflecting the unwanted light. We study the optical properties of the bandpass filter using the transfer-matrix method, and the effect of the bandpass filter on the color gamuts of LCDs is also investigated. When a bandpass filter based on a 5-layer configuration comprising low and high refractive indices ((HL)2H) is used in phosphor-converted white-light-emitting diode (pc-WLED), K2SiF6:Mn4+ (KSF-LED), and quantum-dot (QD) backlights, the color gamuts of the LCDs improve from 72% to 95.3% of NTSC, from 92% to 106.7% of NTSC, and from 104.3% to 112.2% of NTSC respectively. When the incident angle of light increases to 30°, the color gamuts of LCDs with pc-WLED and KSF-LED backlights decrease by 2.9% and 1% respectively. For the QD backlight, the color gamut almost does not change. When the (HL)2H structure is coated on the diffusion film, the color gamut can be improved to 92.6% of NTSC (pc-WLED), 105.6% of NTSC (KSF-LED), and 111.9% of NTSC (QD). The diffusion film has no obvious effect on the color gamut. The results have an important potential application in wide-color-gamut LCDs.