• Title/Summary/Keyword: quantum computer

Search Result 261, Processing Time 0.04 seconds

Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques

  • Sharma, Teena;Maddila, Ravi Kumar;Aljunid, Syed Alwee
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.531-540
    • /
    • 2019
  • Spectral Amplitude Coding Optical Code Division Multiple Access (SAC OCDMA) is an advanced technique in asynchronous environments. This paper proposes design and implementation of a novel quantum logic gate (QLG) code, with code construction algorithm generated without following any code mapping procedures for SAC system. The proposed code has a unitary matrices property with maximum overlap of one chip for various clients and no overlaps in spectra for the rest of the subscribers. Results indicate that a single algorithm produces the same length increment for codes with weight greater than two and follows the same signal to noise ratio (SNR) and bit error rate (BER) calculations for a higher number of users. This paper further examines the performance of a QLG code based SAC-OCDMA system with NAND and direct detection techniques. BER analysis was carried out for the proposed code and results were compared with existing MDW, RD and GMP codes. We demonstrate that the QLG code based system performs better in terms of cardinality, which is followed by improved BER. Numerical analysis reveals that for error free transmission (10-9), the suggested code supports approximately 170 users with code weight 4. Our results also conclude that the proposed code provides improvement in the code construction, cross-correlation and minimization of noises.

Quantum Machine Learning: A Scientometric Assessment of Global Publications during 1999-2020

  • Dhawan, S.M.;Gupta, B.M.;Mamdapur, Ghouse Modin N.
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.11 no.3
    • /
    • pp.29-44
    • /
    • 2021
  • The study provides a quantitative and qualitative description of global research in the domain of quantum machine learning (QML) as a way to understand the status of global research in the subject at the global, national, institutional, and individual author level. The data for the study was sourced from the Scopus database for the period 1999-2020. The study analyzed global research output (1374 publications) and global citations (22434 citations) to measure research productivity and performance on metrics. In addition, the study carried out bibliometric mapping of the literature to visually represent network relationship between key countries, institutions, authors, and significant keyword in QML research. The study finds that the USA and China lead the world ranking in QML research, accounting for 32.46% and 22.56% share respectively in the global output. The top 25 global organizations and authors lead with 35.52% and 16.59% global share respectively. The study also tracks key research areas, key global players, most significant keywords, and most productive source journals. The study observes that QML research is gradually emerging as an interdisciplinary area of research in computer science, but the body of its literature that has appeared so far is very small and insignificant even though 22 years have passed since the appearance of its first publication. Certainly, QML as a research subject at present is at a nascent stage of its development.

Application of a combined safety approach for the evaluation of safety margin during a Loss of Condenser Vacuum event

  • Shin, Dong-Hun;Jeong, Hae-Yong;Park, Moon-Ghu;Sohn, Jung-Uk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1698-1711
    • /
    • 2022
  • A combined safety approach, which uses a best-estimate computer code and adopts conservative assumptions for safety systems availability, is developed and applied to the safety margin evaluation for the Loss of Condenser Vacuum (LOCV) of the 1000 MWe Korean Nuclear Power Plant. The Multi-dimensional Analysis of Reactor Safety-KINS standard (MARS-KS) code is selected as a best-estimate code and the PAPIRUS program is used to obtain different initial operational conditions through random sampling of control variables. During an LOCV event, fuel integrity is not threatened by the increase in Departure from Nuclear Boiling Ratio (DNBR). However, the high pressure in the primary coolant system and the secondary system might affect the system integrity. Thus, the peak pressure becomes a major safety concern. Transient analyses are performed for 124 cases of different initial conditions and the most conservative case, which results in the highest system pressure is selected. It is found the suggested methodology gives similar peak pressures when compared to those predicted from existing methodologies. The proposed approach is expected to minimize the time and efforts required to identify the conservative plant conditions in the existing conservative safety methodologies.

NuSEE: AN INTEGRATED ENVIRONMENT OF SOFTWARE SPECIFICATION AND V&V FOR PLC BASED SAFETYCRITICAL SYSTEMS

  • Koo, Seo-Ryong;Seong, Poong-Hyun;Yoo, Jun-Beom;Cha, Sung-Deok;Youn, Cheong;Han, Hyun-Chul
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.259-276
    • /
    • 2006
  • As the use of digital systems becomes more prevalent, adequate techniques for software specification and analysis have become increasingly important in nuclear power plant (NPP) safety-critical systems. Additionally, the importance of software verification and validation (V&V) based on adequate specification has received greater emphasis in view of improving software quality. For thorough V&V of safety-critical systems, V&V should be performed throughout the software lifecycle. However, systematic V&V is difficult as it involves many manual-oriented tasks. Tool support is needed in order to more conveniently perform software V&V. In response, we developed four kinds of computer aided software engineering (CASE) tools to support system specification for a formal-based analysis according to the software lifecycle. In this work, we achieved optimized integration of each tool. The toolset, NuSEE, is an integrated environment for software specification and V&V for PLC based safety-critical systems. In accordance with the software lifecycle, NuSEE consists of NuSISRT for the concept phase, NuSRS for the requirements phase, NuSDS for the design phase and NuSCM for configuration management. It is believed that after further development our integrated environment will be a unique and promising software specification and analysis toolset that will support the entire software lifecycle for the development of PLC based NPP safety-critical systems.

Design of QCA Latch Using Three Dimensional Loop Structure (3차원 루프 구조를 이용한 QCA 래치 설계)

  • You, Young-Won;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.227-236
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Various circuits on QCA have been researched until these days, a latch required for counter and state control has been proposed as a component of sequential logic circuits. A latch uses a feedback loop to maintain previous state. In QCA, a latch uses a square structure using 4 clocks for feedback loop. Previous latches have been proposed using many cells and clocks in coplanar. In this paper, in order to eliminate these defects, we propose a SR and D latch using multilayer structure on QCA. Proposed three dimensional loop structure is based on multilayer and consists of 3 layers. Each layer has 2 clock differences between layers in order to reduce interference. The proposed latches are analyzed and compared to previous designs.

Multi-layer Structure Based QCA Half Adder Design Using XOR Gate (XOR 게이트를 이용한 다층구조의 QCA 반가산기 설계)

  • Nam, Ji-hyun;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.291-300
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is a computing model designed to be similar to cellular automata, and an alternative technology for next generation using high performance and low power consumption. QCA is undergoing various studies with recent experimental results, and it is one of the paradigms of transistors that can solve device density and interconnection problems as nano-unit materials. An XOR gate is a gate that operates so that the result is true when either one of the logic is true. The proposed XOR gate consists of five layers. The first layer consists of OR gates, the third and fifth layers consist of AND gates, and the second and fourth layers are designed as passages in the middle. The half adder consists of an XOR gate and an AND gate. The proposed half adder is designed by adding two cells to the proposed XOR gate. The proposed half adder consists of fewer cells, total area, and clock than the conventional half adder.

Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz

  • Raley, Jeremy A.;Yeo, Yung-Kee;Hengehold, Robert L.;Ryu, Mee-Yi;Lu, Yicheng;Wu, Pan
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2008
  • ZnO nanotips, grown on c-$Al_2O_3$ and quartz, were implanted variously with 200 keV Fe or Mn ions to a dose level of $5{\times}10^{16}cm^{-2}$. The magnetic properties of these samples were measured using a superconducting quantum interference device (SQUID) magnetometer. Fe-implanted ZnO nanotips grown on c-$Al_2O_3$ showed a coercive field width of 209 Oe and a remanent field of 12% of the saturation magnetization ($2.3{\times}10^{-5}emu$) at 300K for a sample annealed at $700^{\circ}C$ for 20 minutes. The field-cooled and the zero-field-cooled magnetization measurements also showed evidence of ferromagnetism in this sample with an estimated Curie temperature of around 350 K. The Mn-implanted ZnO nanotips grown on c-$Al_2O_3$ showed superparamagnetism resulting from the dominance of a spin-glass phase. The ZnO nanotips grown on quartz and implanted with Fe or Mn showed signs of ferromagnetism, but neither was consistent.

Color-stabilized organic light-emitting devices by using N, N'-bis-(1- naphthyl)-N, N'-diphenyl-1,1-biphenyl-4,4'-diamine/5,6,11,12 - tetraphenylnaphthacene multiple quantum well structures

  • Yoon, Y.B.;Kim, T.W.;Yang, H.W.;Lee, H.G.;Kim, J.H.;Kim, Y.G.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1378-1380
    • /
    • 2005
  • The efficiency and the optical properties of the yellow organic light-emitting devices (OLEDs) were significantly affected by the existence of the multiple quantum well (MQW) structures consisting of N, N'- bis-(1-naphthyl)-N, N'-diphenyl-1,1-biphenyl-4,4'- diamine(NPB)/5,6,11,12 - tetraphenylnaphthacene (rubrene). The maximum efficiency and the luminance of OLEDs with 3-periods of the NPB/rubrene MQWs at 41.6 $mA/cm^2$ were 3.66 cd/A and 1524 $cd/m^2$, respectively, and their Commission Internationale de l'Eclairage chromaticity coordinates were (0.34, 0.55), which indicates a yellow color. These results indicate that the efficiencies of the OLEDs by using MQW emitting layers can be improved.

  • PDF