• Title/Summary/Keyword: quantum calculation

Search Result 167, Processing Time 0.033 seconds

Luminescence Wavelength Control of $CaAlSiN_3:Eu^{2+}$ by Ca-replacing: Computational and Experimental Study

  • Onuma, Hiroaki;Suehiro, Takayuki;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Takaba, Hiromitsu;Kubo, Momoji;Sato, Tsugio;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.290-293
    • /
    • 2009
  • We both theoretically and experimentally investigated the luminescence wavelength control of the $Eu^{2+}$-doped $CaAlSiN_3$ (CASN:$Eu^{2+}$). To modify emission wavelength, Na-doped and Mg-doped CASN:$Eu^{2+}$ (NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$) have been studied. According to quantum chemistry calculation result, we synthesized NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$. NCASN:$Eu^{2+}$ and MCASN:$Eu^{2+}$ showed shorter emission wavelength than that of CASN:$Eu^{2+}$.

  • PDF

Ab Initio Study on the Thermal Decomposition of CH3CF2O Radical

  • Singh, Hari Ji;Mishra, Bhupesh Kumar;Gour, Nand Kishor
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2973-2978
    • /
    • 2009
  • The decomposition reaction mechanism of $CH_3CF_2O$ radical formed from hydroflurocarbon, $CH_3CHF_2$ (HFC-152a) in the atmosphere has been investigated using ab-initio quantum mechanical methods. The geometries of the reactant, products and transition states involved in the decomposition pathways have been optimized and characterized at DFT-B3LYP and MP2 levels of theories using 6-311++G(d,p) basis set. Calculations have been carried out to observe the effect of basis sets on the optimized geometries of species involved. Single point energy calculations have been performed at QCISD(T) and CCSD(T) level of theories. Out of the two prominent decomposition channels considered viz., C-C bond scission and F-elimination, C-C bond scission is found to be the dominant path involving a barrier height of 12.3 kcal/mol whereas the F-elimination path involves that of a 28.0 kcal/mol. Using transition-state theory, rate constant for the most dominant decomposition pathway viz., C-C bond scission is calculated at 298 K and found to be 1.3 ${\times}$ 10$^4s{-1}$. Transition states are searched on the potential energy surfaces involving both decomposition channels and each of the transition states are characterized. The existence of transition states on the corresponding potential energy surface are ascertained by performing Intrinsic Reaction Coordinate (IRC) calculation.

Simulation of 27Al MQMAS NMR Spectra of Mordenites Using Point Charge Model with First Layer Only and Multiple Layers of Atoms

  • Chae, Seen-Ae;Han, Oc-Hee;Lee, Sang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2069-2074
    • /
    • 2007
  • The 27Al multiple quantum magic angle spinning (MQMAS) nuclear magnetic resonance (NMR) spectra of mordenite zeolites were simulated using the point charge model (PCM). The spectra simulated by the PCM considering nearest neighbor atoms only (PCM-n) or including atoms up to the 3rd layer (PCM-m) were not different from those generated by the Hartree-Fock (HF) molecular orbital calculation method. In contrast to the HF and density functional theory methods, the PCM method is simple and convenient to use and does not require sophisticated and expensive computer programs along with specialists to run them. Thus, our results indicate that the spectral simulation of the 27Al MQMAS NMR spectra obtained with the PCM-n is useful, despite its simplicity, especially for porous samples like zeolites with large unit cells and a high volume density of pores. However, it should be pointed out that this conclusion might apply only for the atomic sites with small quadrupole coupling constants.

Electron Redistribution of Clavalanate on Binding to a $\beta$-Lactamase

  • Sang-Hyun Park;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.491-496
    • /
    • 1993
  • A class A ${\beta}$-lactamase from Staphylococcus aureus PC1 complexed with 3R,5R-clavulanate is studied. The starting geometry for the computation is the crystal structure of the ${\beta}$-lactamase. Docking of the clavulanate to the enzyme is done exploiting the requirements of electrostatic and shape complementarity between the enzyme and clavulanate. This structure is then hydrated by water molecules and refined by energy minimization and short molecular dynamics simulation. In the energy refined structure of this complex, the carboxyl group of the clavulanate is hydrogen bonded to Lys-234, and the the carbonyl carbon atom of the clavulanate is adjacent to the $O_{\gamma}$ of Ser-70. It is found that a crystallographic water molecule initially located at the oxyanion hole, which is formed by the two -NH group of Ser-70 and Gln-237, is replaced by the carbonyl oxygen atom of the 3R,5R-clavulanate after docking and energy reginement. The crystallographic water molecules are proved to be important in ligand binding. Glu-166 residue is found to be repulsive to the binding of clavulanate, which is in agreement with experimental observation. Arg-244 residue is found to be important to the binding of clavulanate as well as to interaction with C2 side chain of the clavulanate. The electron density redistribution of the clavulanate on binding to the ${\beta}$-lactamase in studied by an ab initio quantum-mechanical calculation. A significant redistribution of electron density of the clavulanate is induced by the enzyme, toward the enzyme, toward the transition state of the enzymatic reaction.

FUNDAMENTALS AND RECENT DEVELOPMENTS OF REACTOR PHYSICS METHODS

  • CHO NAM ZIN
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.25-78
    • /
    • 2005
  • As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear reactors and innovative new fuel designs in the coming. After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor, this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to resolve them as follows: (1) Derivation of the multi group transport equations and the multi group diffusion equations, with representative solution methods thereof. (2) Elements of modem (now almost three decades old) diffusion nodal methods. (3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed cores. Homogenization and related issues. (4) Description of the analytic function expansion nodal (AFEN) method. (5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods. (6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis. (7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in particular, in very high temperature gas reactor (VHTR) cores.

Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

  • Kim, Sungki;Ko, Wonil;Nam, Hyoon;Kim, Chulmin;Chung, Yanghon;Bang, Sungsig
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1063-1070
    • /
    • 2017
  • This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

Pyrolysis of Lignin Obtained from Cinnamyl Alcohol Dehydrogenase (CAD) Downregulated Arabidopsis Thaliana

  • Kim, Kwang Ho;Kim, Jae-Young;Kim, Chang Soo;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.442-450
    • /
    • 2019
  • Despite its potential as a renewable source for fuels and chemicals, lignin valorization still faces technical challenges in many aspects. Overcoming such challenges associated with the chemical recalcitrance of lignin can provide many opportunities to innovate existing and emerging biorefineries. In this work, we leveraged a biomass genetic engineering technology to produce phenolic aldehyde-rich lignin structure via downregulation of cinnamyl alcohol dehydrogenase (CAD). The structurally altered lignin obtained from the Arabidopsis thaliana CAD mutant was pyrolyzed to understand the effect of structural alteration on thermal behavior of lignin. The pyrolysis was conducted at 400 and $500^{\circ}C$ using an analytical pyrolyzer connected with GC/MS and the products were systematically analyzed. The results indicate that aldehyde-rich lignin undergoes fragmentation reaction during pyrolysis forming a considerable amount of C6 units. Also, it was speculated that highly reactive phenolic aldehydes facilitate secondary repolymerization reaction as described by the lower yield of overall phenolic compounds compared to wild type (WT) lignin. Quantum mechanical calculation clearly shows the higher electrophilicity of transgenic lignin than that of WT, which could promote both fragmentation and recondensation reactions. This work provides mechanistic insights toward biomass genetic engineering and its application to the pyrolysis allowing to establish sustainable biorefinery in the future.

Structure determination of two new compounds isolated from a marine sponge Haliclona(Gellius) sp.

  • Lee, Kyung;Kim, Yun Na;Jeong, Eun Ju
    • 한국자기공명학회논문지
    • /
    • 제25권2호
    • /
    • pp.24-32
    • /
    • 2021
  • Two new sesterterpenes, including a known sesterterpene, were isolated from the marine sponge Haliclona sp. collected in the Gageo island, Korea. One of the new sesterterpenes (1) was an unusual compound possessing a spiroketal moiety and the other (2) represented a four ring-fused skeleton. The planar structure of compound 1 was identical to gombaspiroketals A and B isolated from the marine sponge Clathria gombawuiensis, but the configuration for the two chiral centers was different each other. On the other hand, the skeletal structure of compound 2 was similar to that of phorone A isolated from Phorbas sp. and a compound from C. gombawuiensis, except for one configuration at C-8. However, in comparing the 1H and 13C NMR spectral data, the proton and carbon chemical shifts for the three compounds were almost consistent. The NOESY spectrum revealed that the C-8 configuration of 2 was reversed to that of the two reported compounds. The configuration for compound 2 was supported by quantum mechanical calculation for the carbon chemical shifts and DP4+ probability for the protons and carbons of 2.

캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향 (The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor)

  • 이범한;이성근
    • 한국광물학회지
    • /
    • 제20권4호
    • /
    • pp.313-325
    • /
    • 2007
  • 본 연구에서는 점토광물 표면 클러스터의 크기와 결정학적 위상이 전자 밀도와 자기 차폐 텐서에 미치는 영향을 살펴보기 위하여 캐올리나이트 규산염 층을 대표하는 세 개의 서로 다른 위상의 모델 클러스터와 벤질 알코올과의 상호작용에 대해 다양한 수준의 양자화학 계산을 수행하였다. 모델 클러스터 1은 단순화된 7개의 규산염 고리로 이루어졌고, 모델 클러스터 2는 결정학적 위상을 가진 7개의 규산염 고리로 이루어졌으며, 모델 클러스터 3은 세 개의 규산염 고리와 팔면체 고리로 이루어져 있다. 멀리켄 전하 계산 결과 벤질 알코올과의 반응 후의 상대적인 전자 밀도 이동의 크기는 모델클러스터 3의 사면체 쪽 > 모델 클러스터 1 > 모델 클러스터 2 > 모델 클러스터 3의 팔면체 쪽의 순으로 계산되었다. 또한 벤질 알코올과 강한 수소 결합을 하는 원자들의 전자 밀도 이동이 상대적으로 크다 벤질 알코올 흡착 전에 대한 사면체 표면 원자들의 자기 차폐 텐서 결과는 결정학적 위상을 고려하지 않은 경우 표면 중심으로부터의 거리가 비슷한 산소들끼리 유사한 등방 자기 차폐 텐서 값들을 갖고, 결정학적 위상을 고려한 경우는 결정학적으로 서로 다른 산소 자리(O3, O4, O5)에 대해 각각 $228.2{\pm}3.9,\;228.9{\pm}3.4,\;222.3{\pm}3.0ppm$으로 계산되었다. 흡착 전후의 산소 원자의 화학 차폐의 차이는 알코올과 근접한 산소들에서 약 $1{\sim}5.5ppm$ 정도의 변화가 나타나며 이러한 변화는 최근의 고분해능 이차원 핵자기공명분광 분석을 이용하면 실험으로 관찰할 수 있을 것으로 예상된다. 또한 모델 클러스터 2의 화학 차폐의 변화는 모델 클러스터 1보다 상대적으로 큰 특징을 보인다. 전자밀도 이동과 화학 차폐의 변화는 약한 양의 상관관계를 가진다. 이러한 결과들은 캐올리나이트 규산염 사면체 층과 벤질 알코올이 약한 수소 결합과 벤젠 고리와 규산염 층 산소 원자들의 약한 정전기적 힘에 의해 흡착되고 있음을 보여준다. 본 연구는 점토광물과 유기물에 대한 양자 화학 계산에서 클러스터 크기와 결정학적 위상이 고려되어야 함을 제시한다.

실험 및 밀도범함수이론을 이용한 질소, 인 저감 효과 분석을 위한 여재의 흡착 특성 연구 (The investigation of adsorption properties of filter media for removal efficiency of nitrogen, phosphorus using experimental and density functional theory)

  • 김태윤;권용주;강충현;김종영;신현석;권순철;차성민
    • 한국습지학회지
    • /
    • 제20권3호
    • /
    • pp.263-271
    • /
    • 2018
  • 생활 하수 및 농축산 폐수를 통한 하천으로의 다량의 질소와 인의 유입은 부영양화를 초래하여 하천 자정작용에 악영향을 끼친다. 본 연구에서는 컬럼 실험을 통한 흡착제(활성탄, 제올라이트, 여과사)의 여재층 높이에 따른 암모니아성 질소, 인산염 제거특성을 분석하고, 밀도범함수이론(density functional theory, DFT)를 바탕으로 한 양자역학적 전산 모사를 통해 흡착제와 암모니아성질소($NH_4{^{+}}$)와 인산염($PO_4{^{3-}}$)에 대한 화학적 흡착 거동을 분석하였다. 컬럼 실험 결과, 암모니아성 질소에 대한 제거효율은 제올라이트(95.1%)>활성탄(65.8%)>여과사(10.7%), 인산염의 제거효율은 활성탄(99.6%)>제올라이트(18.8%)>여과사(10.9%) 순으로 나타났다. 제올라이트의 경우, 여재층의 높이에 관계없이 90%이상의 암모니아성 질소에 대한 높은 흡착력을 가졌고, 활성탄의 경우 여재층의 높이가 증가할수록 인과 질소에 대한 높은 흡착효율을 가졌다. DFT를 이용한 흡착제(산화 알루미늄, 활성탄, 여과사)와 영양염류($PO_4{^{3-}}$, $NH_4{^{+}}$)에 대한 흡착거동 분석결과, 제올라이트는 암모니아성 질소($NH_4{^{+}}$)에 대한 높은 흡착에너지(-6.43 eV)를 가졌다. 활성탄의 경우 여과사보다 좁은 HOMO-LUMO 밴드갭을 가져, 전자 이동에 유리한 환경을 조성하여 높은 흡착에너지(-7.10eV)로 영양염류가 제거되는 것을 확인할 수 있었다.