• Title/Summary/Keyword: quantum

Search Result 3,919, Processing Time 0.031 seconds

Quantum Computing Impact on SCM and Hotel Performance

  • Adhikari, Binaya;Chang, Byeong-Yun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2021
  • For competitive hotel business, the hotel must have a sound prediction capability to balance the demand and supply of hospitality products. To have a sound prediction capability in the hotel, it should be prepared to be equipped with a new technology such as quantum computing. The quantum computing is a brand new cutting-edge technology. It will change hotel business and even the whole world too. Therefore, we study the impact of quantum computing on supply chain management (SCM) and hotel performance. Toward the goal we have developed the research model including six constructs: quantum (computing) prediction, communication, supplier relationship, service quality, non-financial performance, and financial performance. The result of the study shows a significant influence of quantum (computing) prediction on hotel performance through the mediating role of SCM in the hotel. Quantum prediction is highly significant in enhancing the SCM in the hotel. However, the direct effect between the quantum prediction and hotel performance is not significant. The finding indicates that hotels which would install the quantum computing technology and utilize the quantum prediction could hugely benefit from the performance improvement.

Quantum Communication Technology for Future ICT - Review

  • Singh, Sushil Kumar;Azzaoui, Abir El;Salim, Mikail Mohammed;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1459-1478
    • /
    • 2020
  • In the last few years, quantum communication technology and services have been developing in various advanced applications to secure the sharing of information from one device to another. It is a classical commercial medium, where several Internet of Things (IoT) devices are connected to information communication technology (ICT) and can communicate the information through quantum systems. Digital communications for future networks face various challenges, including data traffic, low latency, deployment of high-broadband, security, and privacy. Quantum communication, quantum sensors, quantum computing are the solutions to address these issues, as mentioned above. The secure transaction of data is the foremost essential needs for smart advanced applications in the future. In this paper, we proposed a quantum communication model system for future ICT and methodological flow. We show how to use blockchain in quantum computing and quantum cryptography to provide security and privacy in recent information sharing. We also discuss the latest global research trends for quantum communication technology in several countries, including the United States, Canada, the United Kingdom, Korea, and others. Finally, we discuss some open research challenges for quantum communication technology in various areas, including quantum internet and quantum computing.

Technical Trend and Challenging Issues for Quantum Computing Control System (양자컴퓨터 제어 기술)

  • Jeong, Y.H.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.87-96
    • /
    • 2021
  • Quantum computers will be a game-changer in various fields, such as cryptography and new materials. Quantum computer is quite different from the classical computer by using quantum-mechanical phenomena, such as superposition, entanglement, and interference. The main components of a quantum computer can be divided into quantum-algorithm, quantum-classical control interface, and quantum processor. Universal quantum computing, which can be applied in various industries, is expected to have more than millions of qubits with high enough gate accuracy. Currently, It uses general-purpose electronic equipment, which is placed in a rack, at room temperature to make electronic signals that control qubits. However, implementing a universal quantum computer with a low error rate requires a lot of qubits demands the change of the current control system to be an integrated and miniaturized system that can be operated at low temperatures. In this study, we explore the fundamental units of the control system, describe the problems and alternatives of the current control system, and discuss a future quantum control system.

Quantum Error Correction Code Scheme used for Homomorphic Encryption like Quantum Computation (동형암호적 양자계산이 가능한 양자오류정정부호 기법)

  • Sohn, Il Kwon;Lee, Jonghyun;Lee, Wonhyuk;Seok, Woojin;Heo, Jun
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.61-70
    • /
    • 2019
  • Recently, developments on quantum computers and cloud computing have been actively conducted. Quantum computers have been known to show tremendous computing power and Cloud computing has high accessibility for information and low cost. For quantum computers, quantum error correcting codes are essential. Similarly, cloud computing requires homomorphic encryption to ensure security. These two techniques, which are used for different purposes, are based on similar assumptions. Then, there have been studies to construct quantum homomorphic encryption based on quantum error correction code. Therefore, in this paper, we propose a scheme which can process the homomorphic encryption like quantum computation by modifying the QECCs. Conventional quantum homomorphic encryption schemes based on quantum error correcting codes does not have error correction capability. However, using the proposed scheme, it is possible to process the homomorphic encryption like quantum computation and correct the errors during computation and storage of quantum information unlike the homogeneous encryption scheme with quantum error correction code.

Quantum Mechanical Effects on Dynamical Behavior of Simple Liquids

  • Kim, Tae-Jun;Kim, Hyo-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2233-2236
    • /
    • 2011
  • We evaluate quantum-mechanical velocity autocorrelation functions from classical molecular dynamics simulations using quantum correction approaches. We apply recently developed approaches to supercritical argon and liquid neon. The results show that the methods provide a solution more efficient than previous methods to investigate quantum-mechanical dynamic behavior in condensed phases. Our numerical results are found to be in excellent agreement with the previous quantum-mechanical results.

R&D Status of Quantum Computing Technology (양자컴퓨팅 기술 연구개발 동향)

  • Baek, C.H.;Hwang, Y.S.;Kim, T.W.;Choi, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • The calculation speed of quantum computing is expected to outperform that of existing supercomputers with regard to certain problems such as secure computing, optimization problems, searching, and quantum chemistry. Many companies such as Google and IBM have been trying to make 50 superconducting qubits, which is expected to demonstrate quantum supremacy and those quantum computers are more advantageous in computing power than classical computers. However, quantum computers are expected to be applicable to solving real-world problems with superior computing power. This will require large scale quantum computing with many more qubits than the current 50 qubits available. To realize this, first, quantum error correction codes are required to be capable of computing within a sufficient amount of time with tolerable accuracy. Next, a compiler is required for the qubits encoded by quantum error correction codes to perform quantum operations. A large-scale quantum computer is therefore predicted to be composed of three essential components: a programming environment, layout mapping of qubits, and quantum processors. These components analyze how many numbers of qubits are needed, how accurate the qubit operations are, and where they are placed and operated. In this paper, recent progress on large-scale quantum computing and the relation of their components will be introduced.

Novel Class of Entanglement-Assisted Quantum Codes with Minimal Ebits

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.217-221
    • /
    • 2013
  • Quantum low-density parity-check (LDPC) codes based on the Calderbank-Shor-Steane construction have low encoding and decoding complexity. The sum-product algorithm(SPA) can be used to decode quantum LDPC codes; however, the decoding performance may be significantly decreased by the many four-cycles required by this type of quantum codes. All four-cycles can be eliminated using the entanglement-assisted formalism with maximally entangled states (ebits). The proposed entanglement-assisted quantum error-correcting code based on Euclidean geometry outperform differently structured quantum codes. However, the large number of ebits required to construct the entanglement-assisted formalism is a substantial obstacle to practical application. In this paper, we propose a novel class of entanglement-assisted quantum LDPC codes constructed using classical Euclidean geometry LDPC codes. Notably, the new codes require one copy of the ebit. Furthermore, we propose a construction scheme for a corresponding zigzag matrix and show that the algebraic structure of the codes could easily be expanded. A large class of quantum codes with various code lengths and code rates can be constructed. Our methods significantly improve the possibility of practical implementation of quantum error-correcting codes. Simulation results show that the entanglement-assisted quantum LDPC codes described in this study perform very well over a depolarizing channel with iterative decoding based on the SPA and that these codes outperform other quantum codes based on Euclidean geometries.