• Title/Summary/Keyword: quantitative risk assessment

Search Result 509, Processing Time 0.023 seconds

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF

Towards Quantitative Assessment of Human Exposures to Indoor Radon Pollution from Groundwater

  • Donghan Yu;Lee, Han-Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E2
    • /
    • pp.43-51
    • /
    • 2001
  • A report by the national research council in the United States suggested that many lung cancer deaths each year be associated with breathing radon in indoor air. Most of the indoor radon comes directly from soil beneath the basement of foundations. Recently, radon released from groundwater is found to contribute to the total inhalation risk from indoor air. This study presents the quantitative assessment of human exposures to radon released from the groundwater into indoor air. At first, a three-compartment model is developed to describe the transfer and distribution of radon released from groundwater in a house through showering, washing clothes, and flushing toilets. Then, to estimate a daily human exposure through inhalation of such radon for an adult. a physiologically-based pharmacokinetic(PBPK) model is developed. The use of a PBPK model for the inhaled radon could provide useful information regarding the distribution of radon among the organs of the human body. Indoor exposure patterns as input to the PBPK model are a more realistic situation associated with indoor radon pollution generated from a three-compartment model describing volatilization of radon from domestic water into household air. Combining the two models for inhaled radon in indoor air can be used to estimate a quantitative human exposure through the inhalation of indoor radon for adults based on two sets of exposure scenarios. The results obtained from the present study would help increase the quantitative understanding of risk assessment issues associated with the indoor radon released from groundwater.

  • PDF

Quantitative Risk Assessment based on Fault Tree Analysis for Gangform Accident (갱폼 재해의 FTA를 통한 정량적 위험성 산정에 관한 연구)

  • Ham, Young Jong;Kee, Jung Hun;Park, Jong Yil
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.40-47
    • /
    • 2020
  • Although gangform has good workability due to the integration of outer wall forms and working platforms, 22 workers were died from 21 gangform related accidents during 2012 to 2016. Quantitative risk assessment is required for evident based prevention measure selection. In this study, based on 52 accident data from 2004 to the first half of 2019, FTA is conducted for probabilities of direct causes and their contribution to accidents. Three stages are considered; gangform installation, dismantling and lifting, and using. The effectiveness of countermeasures is evaluated through minimum cut set, RAW and RRW. Complete assembly of gangform on the ground level, detailed planning, and fall prevention device are suggested as prevention measures for installation, dismantling and lifting, and using stages, respectively.

A Study on the System Design of Chemical Process using Quantitative Risk Assessment Methodology (정량적 위험성평가기법을 이용한 화학공정 시스템 구축에 관한 연구)

  • Byun, Yoon Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.32-39
    • /
    • 2014
  • To ensure the reliability of the safety system so that handing large quantities of hazardous materials in chemical plant is considered basic information in chemical process design. However, the reliability of the production system may be reduced when the reliability of the safety system emphasized in order to ensure the safety of chemical process. It is necessary to balance the reliability of the production system and reliability of the safety. In this study, a quantitative risk assessment was performed by selecting the furnace process, which is widely used in the chemical plant in order to suggest a way to ensure the safety and productivity of chemical process, based on the quantitative data. Quantitative risk assessment methodology have been used directed graph analysis methodology. It is possible to evaluate the reliability of the safety system and the production system. In this study, the optimum system design requirement to improve the safety and the productivity of the furnace is two-out-of-three logic for TT and PT.

Development of the Risk Assessment Systems for Management of Sunken Ships (침몰선박의 관리를 위한 위해도 평가시스템 개발)

  • Choi, H.J.;Lew, J.M.;Kim, H.;Lee, S.H.;Kang, C.G.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.193-202
    • /
    • 2005
  • Marine risk assessment considers events such as collision/grounding, sinking/capsize, fire/explosion and flooding, developing relationships between their causes and effects. In addition, risk assessment of previously sunken ships are also necessary since they continuously have possibility for further oil spill or can cause other marine accidents. The objective of this paper is to develop the risk assessment systems for sunken ships to prevent oil spill and further marine causalities in order to preserve safe and clean oceans around Korea peninsula. The risk assessment systems for sunken ships comprise of database management sub-system for sunken ships, qualitative risk assessment sub-system, quantitative risk assessment sub-system, and cost-benefit analysis subsystem.

  • PDF

A Study on the Quantitative Risk Assessment of Hydrogen-CNG Complex Refueling Station (수소-CNG 복합충전소 정량적 위험성평가에 관한 연구)

  • Kang, Seung-Kyu;Huh, Yun-Sil
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a quantitative risk assessment for hydrogen-CNG complex refueling stations. Individual and societal risks were calculated by deriving accident scenarios that could occur at hydrogen and CNG refueling stations and by considering the frequency of accidents occurring for each scenario. As a result of the risk assessment, societal risk levels were within the acceptable range. However, individual risk has occurred outside the allowable range in some areas. To identify and manage risk components, high risk components were discovered through risk contribution analysis. High risks at the hydrogen-CNG complex refueling station were large leakage from CNG storage containers, compressors, and control panels. The sum of these risks contributed to approximately 88% of the overall risk of the fueling station. Therefore, periodic and intensive safety management should be performed for these high-risk elements.

Comparative Study of Probabilistic Ecological Risk Assessment (PERA) used in Developed Countries and Proposed PERA approach for Korean Water Environment (확률생태위해성평가(PERA) 선진국 사례분석 및 국내수계에 적합한 PERA 기법 제안)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Woo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.494-501
    • /
    • 2009
  • Probabilistic Ecological risk assessment (PERA) is extensive approach to qualify and quantify risk on the multi species based on species sensitivity distribution (SSD). As a while, deterministic ecological risk assessment (DERA) considers the comparison of predicted no-effect concentration (PNEC) and predicted exposure concentration (PEC). DERA is used to determine if there is potential risk or no risk, and it doesn't consider the nature variability and the species sensitivity. But PERA can be more realistic and reasonable approach to estimate likelihood or risk. In this study, we compared PERA used in developed countries, and proposed PERA applicable for the Korean water environment. Taxonomic groups were classified as "class" level including Actinopterygill, Branchiopoda, Chlorophyceae, Maxillapoda, Insects, Bivalvia, Gastropoda, Secernentea, Polychaeta, Monocotyldoneae, and Chanophyceae in this study. Statistical extrapolation method (SEM), statistical extrapolation method $_{acutechronicratio}$ ($SEM_{ACR}$) and assessment factor method (AFM) were used to calculate the ecological protective concentration based on qualitative and quantitative levels of taxonomic toxicity data. This study would be useful to establish the PERA for the protection of aquatic ecosystem in Korea.

Microbiological Risk Assessment for Milk and Dairy Products in Korea (우유 및 유제품의 안전성 평가를 위한 미생물학적 위해요소의 위해평가)

  • Kim, Hyoun-Wook;Han, Gi-Sung;Park, Beom-Young;Jeong, Seok-Geun;Kim, Hyeon-Shup;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.69-73
    • /
    • 2011
  • Food borne pathogens are a growing concern for human health and food safety throughout the world. Milk and dairy products are commonly associated with spoilage or contamination from a wide variety of physical, microbial, and chemical hazardous. Microbiological risk analysis consists of three components: risk assessment, risk management, and risk communication, and overall objective of this process is ultimately public health protection. The microbiological risk assessment is useful tool to evaluate food safety as it is based on a scientific approach. In addition risk assessment process includes quantitative estimation of the probability of occurrence of microbial hazards to evaluate more accurate human exposure. The aim of this study is to review the microbiological risk assessment on the prevalence of bacterial foodborne pathogens in milk and dairy products.

  • PDF

Quantitative microbial risk assessment of Vibrio parahaemolyticus foodborne illness of sea squirt (Halocynthia roretzi) in South Korea

  • Kang, Joohyun;Lee, Yewon;Choi, Yukyung;Kim, Sejeong;Ha, Jimyeong;Oh, Hyemin;Kim, Yujin;Seo, Yeongeun;Park, Eunyoung;Rhee, Min Suk;Lee, Heeyoung;Yoon, Yohan
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.78-88
    • /
    • 2021
  • The annual consumption of fishery products, particularly sea squirt (Halocynthia roretzi), per person has steadily increased in South Korea. However, the quantitative risk of Vibrio parahaemolyticus following intake of sea squirt has not been analyzed. This study focuses on quantitative predictions of the probability of consuming sea squirt and getting of V. parahaemolyticus foodborne illness. The prevalence of V. parahaemolyticus in sea squirt was evaluated, and the time spent by sea squirt in transportation vehicles, market displays, and home refrigerators, in addition to the temperature of each of these, were recorded. The data were fitted to the @RISK program to obtain a probability distribution. Predictive models were developed to determine the fate of V. parahaemolyticus under distribution conditions. A simulation model was prepared based on experimental data, and a dose-response model for V. parahaemolyticus was prepared using data from literature to estimate infection risk. V. parahaemolyticus contamination was detected in 6 of 35 (17.1%) sea squirt samples. The daily consumption quantity of sea squirt was 62.14 g per person, and the consumption frequency was 0.28%. The average probability of V. parahaemolyticus foodborne illness following sea squirt consumption per person per day was 4.03 × 10-9. The objective of this study was to evaluate the risk of foodborne illness caused by Vibrio parahaemolyticus following sea squirt consumption in South Korea.

Quantitative Risk Assessment of Listeria monocytogenes Foodborne Illness Caused by Consumption of Cheese (위해평가를 통한 치즈에서의 Listeria monocytogenes 식중독 발생 가능성 분석)

  • Ha, Jimyeong;Lee, Jeeyeon
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.552-560
    • /
    • 2020
  • Listeria monocytogenes is a highly pathogenic gram-positive bacterium that is easily isolated from cheese, meat, processed meat products, and smoked salmon. A zero-tolerance (n=5, c=0, m=0/25 g) criteria has been applied for L. monocytogenes in cheese meaning that L. monocytogenes must not be detected in any 25 g of samples. However, there was a lack of scientific information behind this criteria. Therefore, in this study, we conducted a risk assessment based on literature reviews to provide scientific information supporting the baseline and to raise public awareness of L. monocytogenes foodborne illness. Quantitative risk assessment of L. monocytogenes for cheese was conducted using the following steps: exposure assessment, hazard characterization, and risk characterization. As a result, the initial contamination level of L. monocytogenes was -4.0 Log CFU/g in cheese. The consumption frequency of cheese was 11.8%, and the appropriate probability distribution for amount of cheese consumed was a Lognormal distribution with an average of 32.5 g. In conclusion, the mean of probabilities of foodborne illness caused by the consumption of cheese was 5.09×10-7 in the healthy population and 4.32×10-6 in the susceptible population. Consumption frequency has the biggest effect on the probability of foodborne illness, but storage and transportation times have also been found to affect the probability of foodborne illness; thus, management of the distribution environment should be considered important. Through this risk assessment, scientific data to support the criteria for L. monocytogenes in cheese could be obtained. In addition, we recommend that further risk assessment studies of L. monocytogenes in various foods be conducted in the future.