• 제목/요약/키워드: quantile averaging

검색결과 3건 처리시간 0.016초

Local quantile ensemble for machine learning methods

  • Suin Kim;Yoonsuh Jung
    • Communications for Statistical Applications and Methods
    • /
    • 제31권6호
    • /
    • pp.627-644
    • /
    • 2024
  • Quantile regression models have become popular due to their benefits in obtaining robust estimates. Some machine learning (ML) models can estimate conditional quantiles. However, current ML methods mainly focus on just adapting quantile regression. In this paper, we propose a local quantile ensemble based on ML methods, which averages multiple estimated quantiles near the target quantile. It is designed to enhance the stability and accuracy of the quantile fits. This approach extends the composite quantile regression algorithm that typically considers the central tendency under a linear model. The proposed methods can be applied to various types of data having nonlinear and heterogeneous trend. We provide an empirical rule for choosing quantiles around the target quantile. The bias-variance tradeoff inherent in this method offers performance benefits. Through empirical studies using Monte Carlo simulations and real data sets, we demonstrate that the proposed method can significantly improve quantile estimation accuracy and stabilize the quantile fits.

태풍 진로예측을 위한 다중모델 선택 컨센서스 기법 개발 (Development of the Selected Multi-model Consensus Technique for the Tropical Cyclone Track Forecast in the Western North Pacific)

  • 전상희;이우정;강기룡;윤원태
    • 대기
    • /
    • 제25권2호
    • /
    • pp.375-387
    • /
    • 2015
  • A Selected Multi-model CONsensus (SMCON) technique was developed and verified for the tropical cyclone track forecast in the western North Pacific. The SMCON forecasts were produced by averaging numerical model forecasts showing low 70% latest 6 h prediction errors among 21 models. In the homogeneous comparison for 54 tropical cyclones in 2013 and 2014, the SMCON improvement rate was higher than the other forecasts such as the Non-Selected Multi-model CONsensus (NSMCON) and other numerical models (i.e., GDAPS, GEPS, GFS, HWRF, ECMWF, ECMWF_H, ECMWF_EPS, JGSM, TEPS). However, the SMCON showed lower or similar improvement rate than a few forecasts including ECMWF_EPS forecasts at 96 h in 2013 and at 72 h in 2014 and the TEPS forecast at 120 h in 2013. Mean track errors of the SMCON for two year were smaller than the NSMCON and these differences were 0.4, 1.2, 5.9, 12.9, 8.2 km at 24-, 48-, 72-, 96-, 120-h respectively. The SMCON error distributions showed smaller central tendency than the NSMCON's except 72-, 96-h forecasts in 2013. Similarly, the density for smaller track errors of the SMCON was higher than the NSMCON's except at 72-, 96-h forecast in 2013 in the kernel density estimation analysis. In addition, the NSMCON has lager range of errors above the third quantile and larger standard deviation than the SMCON's at 72-, 96-h forecasts in 2013. Also, the SMCON showed smaller bias than ECMWF_H for the cross track bias. Thus, we concluded that the SMCON could provide more reliable information on the tropical cyclone track forecast by reflecting the real-time performance of the numerical models.

서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정 (Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards)

  • 윤선권;이태삼;성기영;안유진
    • 한국수자원학회논문집
    • /
    • 제54권6호
    • /
    • pp.419-431
    • /
    • 2021
  • 최근 서울시의 강수특성이 변하고 있으며, 폭우의 발생빈도와 강도가 점차 증가 추세임이 확인되고 있다. 또한, 대부분의 지역이 도시화가 이루어져 불투수 비율이 높고 인구와 재산이 밀집되어 있어 폭우 발생 시 직접유출에 의한 홍수피해가 가중되고 있는 실정이다. 서울시는 이러한 홍수피해에 적극적으로 대응하기 위하여 침수취약지역 해소사업을 추친 중이며, 구조물적·비구조물적 다양한 대응책을 제시하고 있다. 본 연구에서는 서울시의 미래 기후변화영향을 고려한 수공구조물의 방재성능 목표 설정을 위하여 29개의 GCM의 강수량자료를 활용하여 자료 기간을 단기(2006-2040, P1), 중기(2041-2070, P2), 및 장기(2071-2100, P3)로 구분하여 RCP4.5와 RCP8.5 시나리오에 대한 시공간적 상세화를 실시하였다. 공간상세화는 기상청에서 관리하는 서울관측소의 강우량을 기준으로 GCM의 일자료를 Quantile Mapping을 통하여 처리하였으며, 시간 상세화는 K-Nearest Neighbor Resampling 방법과 유전자알고리즘 방법을 이용한 비매개변수 시간상세화 기법을 통하여 일자료를 시간자료로 상세화하였다. 시간상세화를 통해 각 GCM 시나리오별로 100개의 상세화 시나리오가 산출되어 총 2,900개의 상세화 시나리오를 바탕으로 IDF 곡선을 산출하고 이를 평균하여 미래 극치 강우량의 변화를 산출하였다. 산정결과, 재현기간 100년 지속시간 1시간의 확률강우량은 RCP4.5 시나리오에서 8~16%의 증가 특성을 보이고 있음을 확인하였으며 RCP8.5 시나리오의 경우 7~26%의 증가가 이루어짐을 확인하였다. 본 연구결과는 서울시의 미래 기후변화를 대비한 설계강우량 산정 및 수준목표별 수방정책을 수립하는데 활용이 가능할 것으로 판단된다.