• Title/Summary/Keyword: quantify

Search Result 2,952, Processing Time 0.031 seconds

Assessment methods for evaluating the whitening effect of cosmetics on human skin

  • Kim, Youn-Soo
    • 대한화장품학회지
    • /
    • 제28권3호
    • /
    • pp.63-90
    • /
    • 2002
  • 멜라닌의 정량은 인체에서 화장품의 미백효과를 평가하기 위한 가장 좋은 방법이지만 인체의 멜라닌 측정을 위한 높은 정확성을 가진 non-invasive방법은 아직 확립되지 않은 실정이다. 피부에서 화장품의 미백효과는 피부색의 밝기로 나타낼 수 있으므로 화장품의 미백효력 평가를 위한 재현성있는 방법으로는 피부색측정을 하는 것이 합리적이다 이에 colorimeter, mexameter와 전문가의 육안평가같은 여러 기기나 분석법이 사용되었다. 이 강연에서는 미백효과에 대한 평가를 위한 다양한 평가방법에 대해 자세히 보고하고 각 방법에 대하여 토의하게 될 것이다 그리고 간단히 임상시험에 대한 결과를 보고하고 마지막으로 melanocyte를 정량하는 새로운 non-invasive방법에 대한 model을 제시하려고 한다.

GIS을 활용한 해양환경관리에 관한 연구 II (해수면 수온분포의 정량화를 위한 선 밀도 알고리즘 개발) (A Study on the GIS for The Sea Environmental Management II (- Developing a Line Density Algorithm for The Quantification to the Sea Surface Temperature Distribution - ))

  • 이형민;박기학
    • 환경위생공학
    • /
    • 제21권4호
    • /
    • pp.61-76
    • /
    • 2006
  • A Line Density algorithm was developed to quantify the sea surface temperature distribution using NOAA Sea Surface Temperature(SST) data and Geographic Information Systems(GIS), In addition, a GIS based automation model was designed to extract the Line Density Indices were determined by applying K-means Cluster. SST data in terms of March to May obtained on the coastal area of the Uljin from 2001 to 2004 in spring were used to make two data sets of average sea water temperature map in terms of year as well as month. From the result it was formed that water temperature gradient in April was the strongest among the other months, In particular very strog formation of oceanic front as well as temperature gradients were observed in front of the coastal area around Wonduk and Jukbyeon countries. Because those coastal area is a confront zone of two cold and a warm. It is expected that the development of a Line Density Algorithm would contribute to quantify of the SST for the research of Sea Surface Front(SSF) related to marine life management and the sea environmental conservation.

다목적 최적화기법을 활용한 상수도 공급계통 잔류염소농도 최적운영 모델 개발 (Development of optimization model for booster chlorination in water supply system using multi-objective optimization method)

  • 김기범;서지원;형진석;김태현;최태호;구자용
    • 상하수도학회지
    • /
    • 제34권5호
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

측정부 온도 부하에 따른 광용적맥파 파형 요동 특성 분석 (Analysis for the Fluctuation of the Photoplethysmographic Waveform derived by Temperature Stress of Measuring Position)

  • 이충근;신항식
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.304-309
    • /
    • 2015
  • Applicable range of Photoplethysmography (PPG) becomes wider as a non-invasive physiological measurement technique. However, PPG waveform is easy to be distorted by ambient light or vascular variation from temperature changes. Especially, irregular variation of PPG waveform caused by ambient temperature not only severely distorts the PPG, but also leads miss interpretation in clinical applications. Therefore, the investigation of between temperature and PPG waveform is quite important in using PPG. The purpose of this research is to quantify the PPG waveform characteristic and to investigate the waveform variation following the temperature change on measuring site. To quantify the fluctuation of PPG waveform, we use two techniques; detrended fluctuation analysis (DFA) and AC/DC analysis of PPG. We record PPG under temperature stress, which applied by medical use heat pack ($40^{\circ}C$) and ice pack ($0^{\circ}C$). Ten participants were applied to the experiment, and the result was evaluated to approve the temperature effect with statistical method, Wilcoxon signed rank test. The result shows that the AC component (p<0.05) and perfusion index DFS scale exponent (p<0.01) of PPG have the significance to temperature stress except for a DC component of PPG.

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • 제4권1호
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

Determination of active failure surface geometry for cohesionless backfills

  • Altunbas, Adlen;Soltanbeigi, Behzad;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • 제12권6호
    • /
    • pp.983-1001
    • /
    • 2017
  • The extent by which economy and safety concerns can be addressed in earth retaining structure design depends on the accuracy of the assumed failure surface. Accordingly, this study attempts to investigate and quantify mechanical backfill properties that control failure surface geometry of cohesionless backfills at the active state for translational mode of wall movements. For this purpose, a small scale 1 g physical model study was conducted. The experimental setup simulated the conditions of a backfill behind a laterally translating vertical retaining wall in plane strain conditions. To monitor the influence of dilative behavior on failure surface geometry, model tests were conducted on backfills with different densities corresponding to different dilation angles. Failure surface geometries were identified using particle image velocimetry (PIV) method. Friction and dilation angles of the backfill are calculated as functions of failure stress state and relative density of the backfill using a well-known empirical equation, making it possible to quantify the influence of dilation angle on failure surface geometry. As a result, an empirical equation is proposed to predict active failure surface geometry for cohesionless backfills based on peak dilatancy angle. It is shown that the failure surface geometries calculated using the proposed equation are in good agreement with the identified failure surfaces.

동력형 욕창예방제품의 교대부양 압력 프로파 특성 (Alternating Pressure Profile Characteristics of Powered Pressure Ulcer Preventing Devices)

  • 원병희;송창섭
    • 대한인간공학회지
    • /
    • 제29권4호
    • /
    • pp.639-646
    • /
    • 2010
  • The APAM's quantitative effectiveness and comparative study in preventing and treating pressure ulcer has not been sufficiently evaluated mainly because of uncertainty of pressure load input and lack of interpretation of dynamic perfusion recovery characteristics of soft tissue. The purpose of this paper was to quantify and analyze the alternating pressure characteristics of APAM as a preventive measure for pressure ulcers. To quantify the alternating load to human body, we introduced alternating pressure profile concept and developed parametric model of the profile. Regarding pressure level and cycle time, 3 global and 7 local periodic parameters were used to define the profile such as light, standard, typical and heavy duty profile shape. Pressure impulse ratio of light duty is the lowest but pressure fluctuation is significantly high. For the same duty shape, contact conditions are changed with alternating cycle time and more dramatically in shorter alternating cycle time conditions. We can conclude that if we use shorter alternating cycle time on APAM's operation we can get more positive effects regarding to inflated contact time condition. We proposed the quantitative methods on tissue viability study of external loading by simultaneous measurement of interface pressure and tissue perfusion with proper alternating pressure profile conditions.

Design of Optical Biological Sensor for Phycocyanin Parameters Measurement using Fluorescence Technique

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Yang, Seungyoun
    • International journal of advanced smart convergence
    • /
    • 제5권2호
    • /
    • pp.73-79
    • /
    • 2016
  • Remote sensing and measurement are of paramount importance of providing information on the state of water quality in water bodies. The formation and growth of cyanobacteria is of serious concern to in land aquatic life forms and human life. The main cause of water quality deterioration stems from anthropogenic induced eutrophication. The goal of this research to quantify and determine the spatial distribution of cyanobacteria concentration in the water using remote sensing technique. The standard approach to measure water quality based on the direct measurement of the fluorescence of the chlorophyll a in the living algal cells and the same approach used to detect the phycobilin pigments found in blue-green algae (a.k.a. cyanobacteria), phycocyanin and phycoerythrin. This paper propose the emerging sensor design to measure the water quality based on the optical analysis by fluorescence of the phycocyanin pigment. In this research, we developed an method to sense and quantify to derive phycocyanin intensity index for estimating cyanobacteria concentrations. The development of the index was based on the reflectance difference between visible light band 620nm and 665nm. As a result of research this paper presents, an optical biological sensor design information to measure the Phycocyanin parameters in water content.

Eco-efficiency of Energy Symbiosis for the Energy Network of Surplus Heat

  • Shin, Choon-Hwan;Kim, Ji-Won
    • 한국환경과학회지
    • /
    • 제21권5호
    • /
    • pp.545-553
    • /
    • 2012
  • Eco-efficiency considers both environmental impacts and economic values. It is a useful tool for communicating with stakeholders for business decision making. This study evaluated the eco-efficiency factor (EEF) for the energy network of a dyeing company that supplies surplus heat to a neighboring apartment during the night. This symbiosis network is one of the eco-industrial park (EIP) projects in Korea and aims to benefit local residents and the industrial complex by utilizing surplus heat. In this study, two categories were annualized. The first quantified environmental burden based on $CO_2$ emissions and quantified product value in terms of steam sales. The second used a variety of environmental factors, such as fossil fuel, water and waste, to quantify environmental burden and used steam sales to quantify value. The EEF of the symbiosis network was 1.6, using the global warming impact, and determined using the multiple variable, was 1.33. This study shows that the EEF depends on variable details of environmental burden but the values of this project were very high contrast to other business or EIP project.