• 제목/요약/키워드: quality systems comparison

검색결과 424건 처리시간 0.021초

사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구 (An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining)

  • 이형일;김종우
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.47-73
    • /
    • 2020
  • KTX 차량은 수많은 기계, 전기 장치 및 부품들로 구성되어 있는 하나의 시스템으로 차량의 유지보수에는 상당히 많은 전문성과 유지보수 작업자들의 경험을 필요로 한다. 차량 고장발생 시 유지보수자의 지식과 경험에 따라 문제 해결의 시간과 작업의 질적 차이가 발생하며 그에 따른 차량의 가용율이 달라진다. 일반적으로 문제해결은 고장 매뉴얼을 기반으로 하지만 경험이 많고 능숙한 전문가의 경우는 이와 더불어 개인의 노하우를 접목하여 신속하게 진단하고 조치를 취한다. 이러한 지식은 암묵지 형태로 존재하기 때문에 후임자에게 완전히 전수되기 어려우며, 이를 위해 사례기반의 철도차량 전문가시스템을 개발하여 데이터화된 지식으로 바꾸려고 하는 연구들이 있어왔다. 하지만, 간선에 가장 많이 투입되고 있는 KTX 차량에 대한 연구나 텍스트의 특징을 추출하여 유사사례를 검색하는 시스템 개발은 아직 미비하다. 따라서, 본 연구에서는 이러한 차량 유지보수 전문가들의 노하우를 통해 수행된 고장들에 대한 진단과 조치 이력을 문제 해결의 사례로 활용하여 새롭게 발생하는 고장에 대한 조치가이드를 제공하는 지능형 조치지원시스템을 제안하고자 한다. 이를 위하여, 2015년부터 2017년동안 생성된 차량고장 데이터를 수집하여 사례베이스를 구축하였고, 차원축소 기법인 비음수 행렬 인수분해(NMF), 잠재의미분석(LSA), Doc2Vec을 통해 고장의 특징을 추출하여 벡터 간의 코사인 거리를 측정하는 방식으로 유사 사례를 검색하였으며, 위의 알고리즘에 의해 제안된 조치내역들 간 성능을 비교하였다. 분석결과, 고장 내역의 키워드가 적은 경우의 유사 사례 검색과 조치 제안은 코사인 유사도를 직접 적용하는 경우에도 좋은 성능을 낸다는 것을 알 수 있었고 차원 축소 기법들의 성능 비교를 통해 문맥적 의미를 보존하는 차원 축소 방식 중 Doc2Vec을 적용하는 것이 가장 좋은 성능을 나타낸다는 것을 알 수 있었다. 텍스트 마이닝 기술은 여러 분야에서 활용을 위한 연구들이 이루어지고 있는 추세이나, 본 연구에서 활용하고자 하는 분야처럼 전문적인 용어들이 다수이고 데이터에 대한 접근이 제한적인 환경에서 이러한 텍스트 데이터를 활용한 연구는 아직 부족한 실정이다. 본 연구는 이러한 관점에서 키워드 기반의 사례 검색을 보완하고자 텍스트 마이닝 기법을 접목하여 고장의 특징을 추출하는 방식으로 사례를 검색해 조치를 제안하는 지능형 진단시스템을 제시하였다는 데에 의의가 있다. 이를 통해 현장에서 바로 사용 가능한 진단시스템을 단계적으로 개발하는데 기초자료로써 시사점을 제공할 수 있을 것으로 기대한다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

국제프랜차이징 연구요소 및 연구방향 (Research Framework for International Franchising)

  • 김주영;임영균;심재덕
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.61-118
    • /
    • 2008
  • 본 연구는 국내외 프랜차이즈의 해외진출에 대한 연구들을 바탕으로 국제프랜차이징연구의 전체적인 연구체계를 세워보고, 연구체계를 형성하고 있는 연구요인들을 확인하여 각 연구요소별로 이루어지는 연구주제와 내용을 살펴보고, 앞으로의 연구주제들을 제안하고자 한다. 주요한 연구요소들은 국제프랜차이징의 동기 및 환경 요소과 진출의사결정, 국제프랜차이징의 진입양식 및 발전전략, 국제프랜차이징의 운영전략 및 국제프랜차이징의 성과이다. 이외에도 국제프랜차이징 연구에 적용할 수 있는 대리인이론, 자원기반이론, 거래비용이론, 조직학습이론 및 해외진출이론들을 설명하였다. 또한 국제프랜차이징연구에서 보다 중점적으로 개발해야 할 질적, 양적 방법론을 소개하였으며, 마지막으로 국내연구의 동향을 정리하여 추후의 연구방향을 종합적으로 정리하였다.

  • PDF