• 제목/요약/키워드: quality index map

Search Result 69, Processing Time 0.03 seconds

A study on image segmentation for depth map generation (깊이정보 생성을 위한 영상 분할에 관한 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.707-716
    • /
    • 2017
  • The advances in image display devices necessitate display images suitable for the user's purpose. The display devices should be able to provide object-based image information when a depthmap is required. In this paper, we represent the algorithm using a histogram-based image segmentation method for depthmap generation. In the conventional K-means clustering algorithm, the number of centroids is parameterized, so existing K-means algorithms cannot adaptively determine the number of clusters. Further, the problem of K-means algorithm tends to sink into the local minima, which causes over-segmentation. On the other hand, the proposed algorithm is adaptively able to select centroids and can stand on the basis of the histogram-based algorithm considering the amount of computational complexity. It is designed to show object-based results by preventing the existing algorithm from falling into the local minimum point. Finally, we remove the over-segmentation components through connected-component labeling algorithm. The results of proposed algorithm show object-based results and better segmentation results of 0.017 and 0.051, compared to the benchmark method in terms of Probabilistic Rand Index(PRI) and Segmentation Covering(SC), respectively.

Relationship between fish assemblages community and Streamline complexity (어류군집 특성과 하안형태복잡도와의 관계)

  • Kim, Jin-Ah;Lee, Sang-Woo;Hwang, Gil-Son;Kim, Chulgoo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.19-29
    • /
    • 2012
  • Numerous studies suggested that fish assemblage structure reflects the status of stream ecosystems. The status of streams integrity, including various trophic levels, water quality and habitat degradation, can be assessed by fish assemblages. In this study, we investigated the relationships between fish assemblages and streamline geometry of streams. Previous studies suggested that geomorphologic parameter can be a critical factor of permeability between adjacent two systems. From a landscape ecological perspective, edges may partially control the flow rate of energy between two adjacent systems. Thus, the Streamline geometry can be a geomorphologic parameter that exhibits the integrity of stream. We selected the Nakdong river for study areas, which is one of major rivers and the longest (525 km) River in South Korea. We used the revised IBI representing overall ecological characteristics of Korean fish assemblages and eight sub-assessment criteria of IBI, collected from 82 sampling sites in the Nakdong River. For calculating the Streamline geometry, we measured fractal dimension index that generally used in biology, ecology and landscape ecology. We used the digital land-use/land-cover map and generated a 1-km buffer for each sampling site and refined the shape of the Streamlines. Pearson correlation analyses were performed between Streamline geometry and IBI and sub-assessment criteria of IBI. The results show that IBI and eight sub-assessments of fish are significantly correlated with geometry of Streamline. The fractal dimension of Streamline geometry were related with IBI (r = 0.48) and six sub-assessments of IBI, including total number of native fish and native species, the number of riffle benthic species, sensitive species, tolerant species and native insectivore. Especially, the number of tolerant species(r = -0.52) and native insectivore(r = 0.52) show strong correlation with geometry of Streamline. These results indicate that lower Streamline geometry can result in poor fish assemblages, while higher geometry of Streamline can enhance fish assemblages by potentially supplying insects and better habitat conditions. We expect the results of our study to be useful for stream restoration and management. However, we see the necessity of study investigating the mechanisms how Streamline geometry affect fish assemblages.

A Study on Lightweight CNN-based Interpolation Method for Satellite Images (위성 영상을 위한 경량화된 CNN 기반의 보간 기술 연구)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2022
  • In order to obtain satellite image products using the image transmitted to the ground station after capturing the satellite images, many image pre/post-processing steps are involved. During the pre/post-processing, when converting from level 1R images to level 1G images, geometric correction is essential. An interpolation method necessary for geometric correction is inevitably used, and the quality of the level 1G images is determined according to the accuracy of the interpolation method. Also, it is crucial to speed up the interpolation algorithm by the level processor. In this paper, we proposed a lightweight CNN-based interpolation method required for geometric correction when converting from level 1R to level 1G. The proposed method doubles the resolution of satellite images and constructs a deep learning network with a lightweight deep convolutional neural network for fast processing speed. In addition, a feature map fusion method capable of improving the image quality of multispectral (MS) bands using panchromatic (PAN) band information was proposed. The images obtained through the proposed interpolation method improved by about 0.4 dB for the PAN image and about 4.9 dB for the MS image in the quantitative peak signal-to-noise ratio (PSNR) index compared to the existing deep learning-based interpolation methods. In addition, it was confirmed that the time required to acquire an image that is twice the resolution of the 36,500×36,500 input image based on the PAN image size is improved by about 1.6 times compared to the existing deep learning-based interpolation method.

Effects of Modified Atmosphere Packaging on the Quality of Chitosan and $CaCl_2$ Coated Mushroom (Agaricus bisporus) (환경가스조절 포장이 키토산 및 $CaCl_2$로 코팅 처리된 양송이 버섯의 품질에 미치는 영향)

  • Lee, Jin-Sil
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1308-1314
    • /
    • 1999
  • The effects of modified atmosphere(MA) packaging and coating on the quality of mushroom (Agaricus bisporus) were investigated. Whole mushrooms(100 g) were packed with polyvinyl chloride(PVC) film wrap, PD941 and PD961 film bags and were stored in a chamber at $12^{\circ}C$ and 80% RH for 6 days. Gas composition of packages, respiration rate, weight loss, color and maturity index of MA packaged mushrooms were examined. The wrap packaged mushrooms showed different level of internal $CO_2$ concentrations among water washed, chitosan coated and $CaCl_2$ coated subgroups significantly at 5% level. The maximum $CO_2$ concentration of PD941 and PD961 packages for all coated showed $4.1{\sim}4.7%$ and $10.4{\sim}11.7%$, respectively, for the first day. PD961 package showed the lowest $O_2$ concentration compared to other groups. There were no significant respiration rate differences between wrap packed and PD941 packaged. Respiration rate of water washed. chitosan coated and $CaCl_2$ coated in PD961 packaged was 192 mg, 226 mg and 245 mg, respectively. Maturity index of PD961 packaged were not significantly different among the water washed, chitosan and $CaCl_2$ coated packages. Chitosan coating showed a negative effect on color change of mushrooms. The weight loss of 961 packaged was lower $(7.0{\sim}8.0%)$ that those of wrap packaged and PD941 packaged.

  • PDF

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

Uniformity Evaluation of Elderly Hospital Outpatients' Waiting Space using Discrete Event Simulation (이산사건 시뮬레이션을 이용한 요양병원 외래부 대기공간 균일성 평가)

  • Yoon, So-Hee;Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.490-499
    • /
    • 2017
  • In recent years, the introduction of complex systems analysis based on various variables has become more active in order to identify and analyze complex problems of Modern Society. Prediction of patients' spatial perception and usability according to the spatial arrangement of the outpatient department is a very important factor for providing high quality hospital service. For objective analysis, the standard program procedure and analysis index for the diseases of the elderly were prepared and the uniformity of the atmospheric space was evaluated through heat map analysis and quantitative analysis. In this study, 73 cells were installed and simulated to analyze the uniformity of the four alternatives according to the change of the arrangement of the medical care space, receiving space, and consultation space using the complex system analysis method for the nursing hospitals. The resulting density was derived. The results are as follows. 1)The layout of the reception space has the greatest influence on the total spatial density of the waiting space. 2) The uniformity of the waiting space can be increased by separating the examination space and the examination space. 3)The closer the location of the receiving space is from the entrance, the greater the density of the waiting space. Finally, this study applied discrete event simulation to the evaluation of uniformity of atmosphere space, and proved that the actor - based model can be utilized for utilization and evaluation as spatial analysis methodology.

Efficiency Algorithm of Multispectral Image Compression in Wavelet Domain (웨이브릿 영역에서 다분광 화상데이터의 효율적인 압축 알고리듬)

  • Ban, Seong-Won;Seok, Jeong-Yeop;Kim, Byeong-Ju;Park, Gyeong-Nam;Kim, Yeong-Chun;Jang, Jong-Guk;Lee, Geon-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.4
    • /
    • pp.362-370
    • /
    • 2001
  • In this paper, we proposed multispectral image compression method using CIP (classified inter-channel prediction) and SVQ (selective vector quantization) in wavelet domain. First, multispectral image is wavelet transformed and classified into one of three classes considering reflection characteristics of the subband with the lowest resolution. Then, for a reference channel which has the highest correlation and the same resolution with other channels, the variable VQ is performed in the classified intra-channel to remove spatial redundancy. For other channels, the CIP is performed to remove spectral redundancy. Finally, the prediction error is reduced by performing SVQ. Experiments are carried out on a multispectral image. The results show that the proposed method reduce the bit rate at higher reconstructed image quality and improve the compression efficiency compared to conventional methods. Index Terms-Multispectral image compression, wavelet transform, classfied inter-channel prediction, selective vetor quantization, subband with lowest resolution.

  • PDF

Change of PET Image According to CT Exposure Conditions (CT 촬영 조건에 따른 PET 영상의 변화)

  • Park, Jae-Yoon;Kim, Jung-hoon;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.473-479
    • /
    • 2019
  • PET-CT improves performance and reduces the time by combining PET and CT of spatial resolution, and uses CT scan for attenuation correction. This study analyzed PET image evaluation. The condition of the tube voltage and current of CT will be changed using. Uniformity phantom and resolution phantom were injected with 37 MBq $^{18}F$ (fluorine ; 511 keV, half life - 109.7 min), respectively. PET-CT (Biograph, siemens, US) was used to perform emission scan (30 min) and penetration scan. And then the collected image data were reconstructed in OSEM-3D. The same ROI was set on the image data with a analyzer (Vinci 2.54, Germany) and profile was used to analyze and compare spatial resolution and image quality through FWHM and SI. Analyzing profile with pre-defined ROI in each phantom, PET image was not influenced by the change of tube voltage or exposure dose. However, CT image was influenced by tube voltage, but not by exposure dose. When tube voltage was fixed and exposure dose changed, exposure dose changed too, increasing dose value. When exposure dose was fixed at 150 mA and tube voltage was varied, the result was 10.56, 24.6 and 35.61 mGy in each variables (in resolution phantom). In this study, attenuation image showed no significant difference when exposure dose was changed. However, when exposure dose increased, the amount of dose that patient absorbed increased too, which indicates that CT exposure dose should be decreased to minimum to lower the exposure dose that patient absorbs. Therefore future study needs to discuss the conditions that could minimize exposure dose that gets absorbed by patient during PET-CT scan.