• Title/Summary/Keyword: quality control(QC)

Search Result 179, Processing Time 0.027 seconds

Linear System Depth Detection using Retro Reflector for Automatic Vision Inspection System (자동 표면 결함검사 시스템에서 Retro 광학계를 이용한 3D 깊이정보 측정방법)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.77-80
    • /
    • 2022
  • Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. It has been populated because of the accuracy and consistency in terms of QC (Quality Control) of inspection processes. Also, it is important to predict the performance of an AVI to meet customer's specification in advance. AVI are usually suffered from false negative and positives. It can be overcome by providing extra information such as 3D depth information. Stereo vision processing has been popular for depth extraction of the 3D images from 2D images. However, stereo vision methods usually take long time to process. In this paper, retro optical system using reflectors is proposed and experimented to overcome the problem. The optical system extracts the depth without special SW processes. The vision sensor and optical components such as illumination and depth detecting module are integrated as a unit. The depth information can be extracted on real-time basis and utilized and can improve the performance of an AVI system.

A Study on Production and Its Usefulness of AAPM TG18 Guiding Instrument for Diagnostic Monitor QC (영상의학 검사 판독용 모니터 정도관리 Guiding Instrument 제작과 유용성 고찰)

  • Son, Gi-Gyeong;Sung, Dong-Wook;Jeong, Jae-Ho;Kang, Hui-Doo;Ryu, Kyung-Nam
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Diagnostic display monitor QA according to AAPM TG18 is usually performed by PACS administrator, product manager and reading doctor, and for acceptance testing and periodic quality control evaluation, a combination of visual and quantitative tests can be used, as outlined in sections 5 and 6 of 'assessment of display performance for medical imaging systems'. Although many display tests can be performed visually, a more objective and quantitative evaluation of display performance requires special test tools. The required instruments vary in their complexity and cost, depending on the context of the evaluation(research, acceptance testing, or quality control) and how thorough the evaluation needs to be. Objective and reliable assessment of many display characteristics can be performed with relatively inexpensive equipment, So, we made 'AAPM TG18 guiding instrument' to ues variable purpose of the evaluation of 'geometrical distortions(quantitative"', 'veiling glare(visual)' and 'sensor calibration'. The spatial measurements for the quantitative evaluation of geometric distortions, and the measurement of the veling-glare ring response function which provides information regarding the spatial extent of the luminance spread, can be performed using the TG18 guiding instrument can be used to sensor calibration to standardize the basic rate of 0% luminance when periodic calibration.

  • PDF

A Study on the Quality Control Method for Geotechnical Information Using AI (AI를 이용한 지반정보 품질관리 방안에 관한 연구)

  • Park, Ka-Hyun;Kim, Jongkwan;Lee, Seokhyung;Kim, Min-Ki;Lee, Kyung-Ryoon;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.87-95
    • /
    • 2022
  • The geotechnical information constructed in the National Geotechnical Information DB System has been extensively used in design, construction, underground safety management, and disaster assessment. However, it is necessary to refine the geotechnical information because it has nearly 300,000 established cases containing a lot of missing or incorrect information. This research proposes a method for automatic quality control of geotechnical information using a fully connected neural network. Significantly, the anomalies in geotechnical information were detected using a database combining the standard penetration test results and strata information of Seoul. Consequently, the misclassification rate for the verification data is confirmed as 5.4%. Overall, the studied algorithm is expected to detect outliers of geotechnical information effectively.

The development of pH reading system based on vision system (영상 기반 pH 산도 측정 시스템 개발)

  • Moon, Ha-Jung;Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.398-406
    • /
    • 2013
  • Nuclear medicine imaging devices such as PET diagnose disease after injecting radiopharmaceuticals in human body for diagnosis. Radiopharmaceuticals should maintain the proper pH for human body safety. In general, pH paper is used to measure the pH of the radiopharmaceutical. pH of the sample compared with the standard color chart is used for measurement. However, the pH reading difference according to the experience of a rater can be generated. Also, a pH meter for measuring pH has a high sensitivity and contamination of the sensor must be avoided. In this paper, we developed the new hardware device for pH reading method and software was developed with vision algorithm to measure pH easily and simply.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

Development of Criteria for Predicting Delamination in Cabinet Walls of Household Refrigerators (냉장고 캐비닛 벽면에서 발생하는 박리현상 예측을 위한 평가 기준 개발에 관한 연구)

  • Park, Jin Seong;Kim, Sung Ik;Lee, Gun Yup;Cho, Jong Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • Household refrigerator cabinets must undergo cyclic testing at -20 ℃ and 65 ℃ for quality control (QC) after their production is complete. These cabinets were assembled from different materials, including acrylonitrile butadiene styrene (ABS), polyurethane (PU) foam, and steel plates. However, different thermal expansion values could be observed owing to differences in the mechanical properties of the materials. In this study, a technique to predict delamination on a refrigerator wall caused by thermal deformation was developed. The mechanical properties of ABS and PU foams were tested, theload factors causing delamination were analyzed, delamination was observed using a high-speed camera, and comparison and verification in terms of stress and strain were performed using a finite element model (FEM). The results indicated that the delamination phenomenon of a refrigerator wall can be defined in two cases. A method for predicting and evaluating delamination was established and applied in an actual refrigerator. To determine the effect of temperature changes on the refrigerator, strain measurements were performed at the weak point and the stress was calculated. The results showed that the proposed FEM prediction technique can be used as a basis for virtual testing to replace future QC testing, thus saving time and cost.

Genetic structure analysis of domestic companion dogs using high-density SNP chip

  • Gwang Hyeon Lee;Jae Don Oh;Hong Sik Kong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.138-144
    • /
    • 2024
  • Background: As the number of households raising companion dogs increases, the pet genetic analysis market also continues to grow. However, most studies have focused on specific purposes or native breeds. This study aimed to collect genomic data through single nucleotide polymorphism (SNP) chip analysis of companion dogs in South Korea and perform genetic diversity analysis and SNP annotation. Methods: We collected samples from 95 dogs belonging to 26 breeds, including mixed breeds, in South Korea. The SNP genotypes were obtained for each sample using an AxiomTM Canine HD Array. Quality control (QC) was performed to enhance the accuracy of the analysis. A genetic diversity analysis was performed for each SNP. Results: QC initially selected SNPs, and after excluding non-diverse ones, 621,672 SNPs were identified. Genetic diversity analysis revealed minor allele frequencies, polymorphism information content, expected heterozygosity, and observed heterozygosity values of 0.220, 0.244, 0.301, and 0.261, respectively. The SNP annotation indicated that most variations had an uncertain or minimal impact on gene function. However, approximately 16,000 non-synonymous SNPs (nsSNPs) have been found to significantly alter gene function or affect exons by changing translated amino acids. Conclusions: This study obtained data on SNP genetic diversity and functional SNPs in companion dogs raised in South Korea. The results suggest that establishing an SNP set for individual identification could enable a gene-based registration system. Furthermore, identifying and researching nsSNPs related to behavior and diseases could improve dog care and prevent abandonment.

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.

Analysis of Effective Improvement Depth for Establishing Quality Control Criteria of Rapid Impact Compaction for Public Fill Compaction (Public Fill 다짐 시 급속충격다짐공법의 품질관리기준 수립을 위한 유효개량심도 분석)

  • Kim, Kyu-Sun;Park, Jaeyoung;Kim, Hayoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.10
    • /
    • pp.5-18
    • /
    • 2023
  • The construction timeline for earthworks can be significantly reduced by substituting the conventional layer-by-layer compaction using a vibratory roller with single-layer compaction through the rapid impact compaction (RIC) method. Dynamic load compaction is well-suited for coarse-grained soils like sand. However, as the supply of sand, the primary reclamation material, becomes scarcer, the utilization of soil with fines is on the rise. To implement the dynamic load compaction, such as RIC, with reclaimed materials containing fines, it's imperative to determine the effective improvement depth. In this study, we assess the impact of the RIC method on the effective improvement depth for clean sand and public fill with fines, comparing field test results before and after RIC application. Our focus is on the cone resistance (qc) as it pertains to compaction quality control criteria. In conclusion, it becomes evident that standardizing the cone resistance is vital for the quality control of various reclaimed soils with fines. We have evaluated the compaction quality control criteria corresponding to a relative density (Dr) of 70% for clean sand as Qtn,cs = 110. As a result of this analysis, we propose new quality control criteria for qc, taking into account the fines content of reclaimed soils, which can be applied to RIC quality control.

Evaluation of Uncertainties in the Measurement of Ambient NO2 Level (대기 중 NO2 측정의 불확도 평가)

  • 이진홍;임종명;우진춘
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.355-362
    • /
    • 2002
  • There has been relatively a few studies that focused on evaluation of uncertainty for standard methods by which criteria pollutants are analyzed in ambient air. Especially, uncertainty evaluation has not been made yet for sampling and analysis of airborne NO$_2$. Ambient NO$_2$ has been thought to be a major criteria pollutant worldwide because of the potential of ozone formation as well as of its own toxicity. In this study, we tried to assess uncertainties associated with the every step of sampling and of analytical procedure of Griess-Saltzman method. Quality assurance (QA) and quality control (QC) were also emphasized with the uncertainty characterization. The use of Griess-Saltzman method for ambient NO$_2$ analysis showed very uniform daily concentration distribution with the mean of 10.8 ppb and the standard deviation of 1.08ppb during the sampling period. However, seven daily samples collected at the same sampling time and place exhibited highly different concentration distribution. Therefore, we evaluated uncertainties associated with sampling and analysis through the precise application of ISO Guide. Estimates of expanded uncertainties for a total of 62 samples fell in a relatively broad range of 5.17% to 11.85%. On the other hand. the expanded uncertainties were smaller for the high concentration range of greater than 15ppb.