• Title/Summary/Keyword: quadrupole

Search Result 382, Processing Time 0.03 seconds

Validation of a HPLC MS/MS Method for Determination of Doxorubicin in Mouse Serum and its Small Tissues (마우스 혈장과 조직에서의 doxorubicin 측정 HPLC-MS/MS 방법)

  • Park, Jung-Sun;Kim, Hye-Kyung;Lee, Hye-Won;Lee, Mi-Hyun;Kim, Hyun-Gi;Chae, Soo-Wan;Chae, Han-Jung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.16 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • Doxorubicin (DXR) is a type of anti-cancer drug called an 'anthracycline glycoside', It works by impairing DNA synthesis, a crucial feature of cell division, and thus is able to target rapidly dividing cells. Doxorubicin is a very serious anti-cancer medication with definite potential to do great harm as well as great good. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method was developed to identify and quantify DXR in small-volume biological samples. After the addition of internal standard (IS, $5{\mu}L\;of\;1{\mu}M/ml$ daunorubicin methanol solution) into the serum sample, the drug and IS were extracted by methanol. Following vortex for a 1min and centrifugation at 15,000g for 10 min the organic phase was transferred and evaporated under a vacuum. The residue was reconstituted with $350{\mu}L$ of mobile phase and $10{\mu}L$ was injected into C18 column with mobile phase composed of 0.05M ammonium acetate (0.1 M acetic acid adjusted to pH 3.5) and acetonitrile (40:60, v/v). The flow rate was kept constant at $350{\mu}L/min$. The ions were quantified in the multiple reaction mode (MRM), using positive ions, on a triple quadrupole mass spectrometer. The lower limits of quantification for Doxorubicin in plasma and small tissues were approximately 0.5 ng/mL and 0.5 ng/mL respectively. Intra- and inter-assay accuracy (% of nominal concentration) and precision (% CV) for all analytes were within 15%, respectively.

  • PDF

Accumulation of Microcystins in Fish and Evaluation of Potential Human Health Risks: A Case Study on a Eutrophic Reservoir in Korea (마이크로시스틴의 어류내 축적성 및 인체 위해성 평가: 국내 저수지 사례연구)

  • Yoon, Hyojung;Seo, Jungkwan;Kim, Taksoo;Jo, Areum;Kim, Jungkon;Lee, Doohee;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Objectives: Microcystin (MC) produced during cyanobacterial blooms is a worldwide problem presenting a serious health threats to humans and ecosystems. During July through October of 2013, the Ilwol Reservoir experienced a high biomass of phytoplankton (maximum $211.7mg/m^3$ of Chlorophyll-a) containing the toxigenic cyanobacterium Oscillatoria sp. The aim of this study is to analyze MC concentration in the reservoir water, as well as in representative fish species (Carassius cuvieri, Carassius auratus, Channa argus). We also evaluated the human health risk of exposure to MCs accumulated in the fish. Methods: Concentrations of MCs in the water and fish samples were analyzed by liquid chromatography with a triple quadrupole tandem mass spectrometer (LC/MS/MS) and enzyme-linked immunosorbent assay (ELISA). Results: The total levels of four MC variants, including MC-LR, MC-RR, MC-YR and MC-LA were below the WHO drinking water guideline limit (1 ug MC-LR per liter) both for the dissolved and particulate fraction present in the water samples. The mean MC concentrations in the livers of all species were significantly higher than in the gills (p < 0.01) and muscles (p < 0.05). The values of estimated daily intake of MCs in muscles, the edible part of the fish, would be only $0.005-0.015{\mu}g/kg{\cdot}day$, much lower than WHO's provisional tolerable daily intake of $0.04{\mu}g/kg{\cdot}day$. Conclusion: This study suggests that, owing to the spatial distribution or temporal variation of MC, there is a need for careful monitoring of cyanotoxin in reservoir water and aquatic animals to protect public health.

Proteomic analysis of human serum from patients with temporal lobe epilepsy (측두엽 간질환자의 혈청에서 프로테오믹스기법을 활용한 질병관련 단백질 동정)

  • Lee, Chang Woo;Yu, Seung Taek;Choi, Ha Young;Koh, Bun Jeong;Kwak, Yong Guen
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.5
    • /
    • pp.567-575
    • /
    • 2009
  • Purpose : Epilepsy affects more than 0.5% of the world's population. It has a large genetic component and is caused by electrical hyperexcitability in the central nervous system. Despite its prevalence, the disease lacks definitive diagnostic serological biomarkers. To identify potential biomarkers for epilepsy by a convenient method, we analyzed the expression of serum proteins, reflecting alterations in the patient's proteomes. Methods : We compared two-dimensional electrophoretic band patterns of human sera from eight patients with temporal lobe epilepsy (TLE) with those of eight control subjects. The differentially expressed bands were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. esults : Twelve proteins were differentially expressed in the TLE group, of which 6 were identified. Expression of haptoglobin Hp2, PRO2675, immunoglobulin heavy chain constant region gamma 2, an unnamed protein, and three unidentified proteins were upregulated in serum from the patients with TLE, whereas those of major histocompatibility complex (MHC) class I antigen, plasma retinol-binding protein precursor, and three unidentified proteins were downregulated in these patients. After resection of the epileptogenic zone, the expressions of MHC class I antigen, immunoglobulin heavy chain constant region gamma 2, two of the downregulated unidentified proteins, and one of the upregulated unidentified proteins returned to the normal range. Conclusion : The 12 serum proteins in this study are potentially useful biomarkers for the diagnosis and monitoring of TLE.

Magnetized inductively coupled plasma etching of GaN in $Cl_2/BCl_3$ plasmas

  • Lee, Y.H.;Sung, Y.J.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.49-49
    • /
    • 1999
  • In this study, $Cl_2/BCI_3$ magnetized inductively coupled plasmas (MICP) were used to etch GaN and the effects of magnetic confinements of inductively coupled plasmas on the GaN etch characteristics were investigated as a function of $Cl_2/BCI_3$. Also, the effects of Kr addition to the magnetized $Cl_2/BCI_3$ plasmas on the GaN etch rates were investigated. The characteristics of the plasmas were estimated using a Langmuir probe and quadrupole ma~s spectrometry (QMS). Etched GaN profiles were observed using scanning electron microscopy (SEM). The small addition of $Cl_2/BCI_3$ (10-20%) in $Cl_2$ increased GaN etch rates for both with and without the magnetic confinements. The application of magnetic confinements to the $Cl_2/BCI_3$ inductively coupled plasmas (ICP) increased GaN etch rates and changed the $Cl_2/BCI_3$ gas composition of the peak GaN etch rate from 10% $BCI_3$ to 20% $BCI_3$. It also increased the etch selectivity over photoresist, while slightly reducing the selectivity over $Si0_2$. The application of the magnetic field significantly increased positive $BCI_2{\;}^+$ measured by QMS and total ion saturation current measured by the Langmuir probe. Other species such as CI, BCI, and CI+ were increased while species such as $BCl_2$ and $BCI_3$ were decreased with the application of the magnetic field. Therefore, it appears that the increase of GaN etch rate in our experiment is related to the increased dissociative ionization of $BCI_3$ by the application of the magnetic field. The addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition (80% $Cl_2/$ 20% $BCI_3$) with the magnets increased the GaN etch rate about 60%. More anisotropic GaN etch profile was obtained with the application of the magnetic field and a vertical GaN etch profile could be obtained with the addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition with the magnets.

  • PDF

Residual Multi Pesticides Screening of Dead Birds by Orbitrap High Resolution Mass Spectrometry (오비트랩 고분해능 질량분석기를 이용한 폐사 조류 중 다성분 잔류 농약 스크리닝 기법)

  • Lee, Doo-Hee;Kim, Bo-Kyong;Wang, Seung-Jun;Son, Ki-Dong;Jung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • BACKGROUND: The objective of this study was to evaluate screening method of residual multi pesticides in dead birds by Orbitrap high resolution mass spectrometry (HRMS) to identify the cause of death for birds. METHODS AND RESULTS: Extraction and clean-up method of residual pesticides in liver of dead birds was used QuEChERS (Quick Easy Cheap Effective Rugged and Safe) and method validations was conducted using liquid chromatography and gas chroamtography with triple-quadrupole mass spectrometer (LC/MS/MS and GC/MS/MS) Also, we were evaluated screening method for the determination of residual pesticides in liver of dead birds by LC and GC Orbitrap Mass Spectrometry. Results of method validations, Correlation coefficients of the matrix matched calibration curves were >0.978, and the method detection limits (MDLs) and limits of quantitation (LOQ) were 2.8~72.1 ng/g (18.4 ng/g on average) and 9.0~230 ng/g (58.5 ng/g on average). The accuracy ranged from 69.1%to 130% (103% on average), and the precision values were less than 14.8%(3.8%on average). The screening of residual pesticides in liver of dead birds by LC and GC Orbitrap HRMS was detected monocrotophos, carbofuran, carbosulfan, deltametrin, benfuracarb, carbofuran, phosphamidon, prochloraz in investigated samples. CONCLUSION: This results showed that accurate mass were extraction of residual pesticides in dead birds by Orbitrap HRMS. It suggested that this screening method is applicable to the residual pesticide analysis for the cause of death as a main tool.

Quali-Quantitative Analysis of Flavonoids for Mulberry Leaf and Fruit of 'Suhyang'

  • Ju, Wan-Taek;Kwon, O-Chul;Lee, Min-Ki;Kim, Hyun-Bok;Sung, Gyoo-Byung;Kim, Yong-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.249-255
    • /
    • 2017
  • BACKGROUND: Globally, mulberry (Morus sp.) is exploited for feeding leaf to silkworms in order to obtain silk fiber or for animal feedstock production. Also, mulberry fruit is known to a by-product that was produced from mulberry tree after harvesting leaves for silkworm rearing, as a yield and consumption of mulberry fruit was increased, it has been fixing to a newincome crop. Mulberry leaves and fruits are used for the health benefits of human beings. Mulberry contains various bioactive components, such as alkaloids and flavonoids. Mulberry flavonoids are an important part of the diet because of their effects on human nutrition. The flavonoids in mulberry leaf and fruit of 'Suhyang'(Morus alba L.) were determined. METHODS AND RESULTS: Flavonoids for mulberry leaf and fruit of 'Suhyang' were analysed using ultrahigh performance liquid chromatography coupled with diode array detection and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS)technique. An UPLC-DAD-QTOF/MS system was used, and identification of mulberry leaves constituents was carried out on the basis of the complementary information obtained from LC spectra, MS ions, and MS/MS fragments. The mulberry leaf (16 flavonoids) and fruit (9 flavonoids) were isolated and analyzed from Suhyang using UPLC-DAD-QTOF/MS chromatogram. To the best of our knowledge, Quercetin 3-O-(6"-O-malonyl) glucoside and quercetin 3-O-rutinoside (rutin) was detected on the highest content in leaf and fruit, respectively and further research will be devoted to evaluate their biological activity. CONCLUSION: Obtaining information about the concentration of functional materials in mulberry leaves could contribute to the development and promotion of processed, functional products and offer possible industrial use of 'Suhyang', holding promises to enhance the overall profitability of sericulture.

Utility of Integrated Analysis of Pharmacogenomics and Pharmacometabolomics in Early Phase Clinical Trial: A Case Study of a New Molecular Entity

  • Oh, Jaeseong;Yi, Sojeong;Gu, Namyi;Shin, Dongseong;Yu, Kyung-Sang;Yoon, Seo Hyun;Cho, Joo-Youn;Jang, In-Jin
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2018
  • In this report, we present a case study of how pharmacogenomics and pharmacometabolomics can be useful to characterize safety and pharmacokinetic profiles in early phase new drug development clinical trials. During conducting a first-in-human trial for a new molecular entity, we were able to determine the mechanism of dichotomized variability in plasma drug concentrations, which appeared closely related to adverse drug reactions (ADRs) through integrated omics analysis. The pharmacogenomics screening was performed from whole blood samples using the Affymetrix DMET (Drug-Metabolizing Enzymes and Transporters) Plus microarray, and confirmation of genetic variants was performed using real-time polymerase chain reaction. Metabolomics profiling was performed from plasma samples using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A GSTM1 null polymorphism was identified in pharmacogenomics test and the drug concentrations was higher in GSTM1 null subjects than GSTM1 functional subjects. The apparent drug clearance was 13-fold lower in GSTM1 null subjects than GSTM1 functional subjects (p < 0.001). By metabolomics analysis, we identified that the study drug was metabolized by cysteinylglycine conjugation in GSTM functional subjects but those not in GSTM1 null subjects. The incidence rate and the severity of ADRs were higher in the GSTM1 null subjects than the GSTM1 functional subjects. Through the integrated omics analysis, we could understand the mechanism of inter-individual variability in drug exposure and in adverse response. In conclusion, integrated multi-omics analysis can be useful for elucidating the various characteristics of new drug candidates in early phase clinical trials.

A Study on Embrittlement of Fast Neutron-irradiated Nuclear Reactor Pressure Vessel Steels at Room- and Liquid Nitrogen-temperature (상온 및 액체질소 온도에서 고속 중성자 조사된 원자로 압력 용기의 취화 현상에 관한 연구)

  • Kim, H.B.;Kim, H.S.;Kim, S.K.;Shin, D.H.;Yu, Y.B.;Ko, J.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • The embrittlement of fast neutron-irradiated reactor pressure vessel (RPV) steels was investigated by X-ray diffraction patterns at room temperature and $M\ddot{o}ssbauer$ spectroscopy at room- and liquid nitrogen-temperature. Neutron fluence on the samples were $10^{12},\;10^{13},\;10^{14},\;10^{15},\;10^{16},\;10^{17},\;10^{18}\;n/cm^2$. The X-ray diffraction patterns showed that the structure of the neutron unirradiated sample was bcc type, where as but the neutron irradiated samples with the fluence higher than $10^{17}\;n/{\cal}cm^2$ were so severely damaged, that bcc type structure disappeared. The $M\ddot{o}ssbauer$ spectra of all samples showed superposition of two or more sextets. In this paper all $M\ddot{o}ssbauer$ spectra were fitted by three set of sextet. The isomer shift and quadrupole splitting values were found around zero. At liquid nitrogen temperature, magnetic hyperfine field and absorption area increase rapidly S 1 sextet in the samples of $10^{17}\~10^{18}\;n/{\cal}cm^2$ neutron fluences. And at room temperature, magnetic hyperfine field and absorption increased rapidly at SI sextet in the samples of $10^{17}\~10^{18}\;n/{\cal}cm^2$ neutron fluences. This rapid increase of magnetic hyperfine field and absorption area were inferred to be caused by the change of $^{56}Fe,\;^{55}Mn$ into $^{57}Fe$ due to by neutron irradiation.

The Research about the Correlation Between the Spontaneous Polarization of LuFe2O4 and Behavior of Iron by Mössbauer (뫼스바우어 분광법을 이용한 LuFe2O4의 자발분극과 철 이온의 거동과의 상관관계에 대한 연구)

  • Bang, Bong-Kyu;Kim, Chul-Sung;Kim, Sung-Baek;Cheong, S.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.10-13
    • /
    • 2007
  • Single crystalline, $LuFe_2O_4$, was grown by the floating zone method. The crystal structure was a two-dimensional layered-type rhombohedral($R\={3}mh$) structure, with an $a_0=3.440(2)\;{\AA}\;and\;a\;c_0=25.263(2)\;{\AA}$. The magnetic $N\'{e}el$ temperature($T_N$) was determined to be 250 K. The $M\"{o}ssbauer$ spectrum at 12 K was fitted with four sextet sets which was resulted from the crystal structure. The spectrm at room temperature consisted of three singlets and a doublet with the electric quadrupole splitting. The isomer shift($\delta$) value of the singlet was $0.20{\pm}0.01mm/s$ relative to the Fe metal indicating the $Fe^{3+}$ valence state, and the value of the doublet was $0.70{\pm}0.01mm/s$ indicating $Fe^{2+}$. The $M\"{o}ssbauer$ absorption area ratio between $Fe^{3+}$ and $Fe^{2+}$ at room temperature was 1:1. The doublet phase of spectra gradually disappears by up to 360 K. At 360 K, the spectrum shows the singlet phase. We suggested that the spontaneous polarization effect of $LuFe_2O_4$ was caused by the change of iron behavior.

Studies of Crystallographic and Magnetic Properties in Fe0.9Zn0.1Cr2S4 (Fe0.9Zn0.1Cr2S4의 결정학적 및 자기적 성질에 관한 연구)

  • Bae, Sung-Hwan;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.34-37
    • /
    • 2007
  • The crystallographic and magnetic properties of $Fe_{0.9}Zn_{0.1}Cr_2S_4$ have been studied by X-ray diffractometer(XRD), vibrating sample magnetometer(VSM) and $M\"{o}ssbauer$ spectroscopy measurement. The crystal structure was determined by the normal cubic spinel of space group Fd3m and the lattice constant was $a_0=9.9967\;{\AA}$. The specific phenomenon which looks like cusp pattern at 77 K was observed in magnetization corves(ZFC : Zero Field Cooling) under 100 Oe applied field. $N\acute{e}el$ temperature($T_N$) was determined to be 153 K by VSM and $M\"{o}ssbauer$ spectra. The asymmetric 8-line profile has been observed at 4.2 K, which was attributed by the colossal electric quadupole interaction(${\Delta}E_Q$), ${\Delta}E_Q$ has 2.22 mm/s at 4.2 K. The ${\Delta}E_Q$ abruptly decreases around 77 K and then it disappears above 77 K with diminishing of 8-line pattern. The isomer shift $\delta$ at room temperature is 0.48 mm/s relative to Fe metal, which means that the charge state of Fe ions is ferrous in character.