• Title/Summary/Keyword: quadrotor

Search Result 72, Processing Time 0.025 seconds

Control of Quadrotor UAV Using Adaptive Sliding Mode with RBFNN (RBFNN을 가진 적응형 슬라이딩 모드를 이용한 쿼드로터 무인항공기의 제어)

  • Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.185-193
    • /
    • 2022
  • This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.

An Obstacle Avoidance Technique of Quadrotor Using Immune Algorithm (면역 알고리즘을 이용한 쿼드로터 장애물회피 기술)

  • Son, Byung-Rak;Han, Chang-Seup;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.269-276
    • /
    • 2014
  • In recent, autonomous navigation techniques to avoid obstacles have been studied by using unmanned aircraft vehicles(UAVs) since the increment of UAV's interest and utilization. Particularly, autonomous navigation based UAVs are utilized in several areas such as military, police, media, and so on. However, there are still some problems to avoid obstacle when UVAs perform autonomous navigation. For instance, the UAV can not forward in the corner of corridors even though it utilizes the improved vanish point algorithm that makes an autonomous navigation system. Therefore, in this paper, we propose an obstacle avoidance technique based on immune algorithm for autonomous navigation of Quadrotor. The proposed algorithm is consisted of two steps such as 1) single color discrimination and 2) multiple color discrimination. According to the result of experiments, we can solve the previous problem of the improved vanish point algorithm and improve the performance of autonomous navigation of Quadrotor.

Cooperative Surveillance and Boundary Tracking with Multiple Quadrotor UAVs (복수 쿼드로터 무인기를 이용한 협업 감시 및 경계선 추종)

  • Lee, Hyeon Beom;Moon, Sung Won;Kim, Woo Jin;Kim, Hyoun Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.423-428
    • /
    • 2013
  • This paper investigates a boundary tracking problem using multiple quadrotor UAVs to detect and track the boundary of physical events. We set the boundary estimation problem as a classification problem of the region in which the physical events occur, and employ SVL (Support Vector Learning). We also demonstrate a velocity vector field which is globally attractive to a desired closed path with circulation at the desired speed and a virtual phase for stabilizing the collective configuration of the multiple quadrotors. Experimental results with multiple quadrotors show that this study provides good performance of the collective boundary tracking.

Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability (Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험)

  • Kim, Dong-Gyun;Lee, Byoungjin;Lee, Young Jae;Sung, Sangkyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.

Quadrotor wake characteristics according to the change of the rotor separation distance (로터 간격에 따른 쿼드로터의 후류특성 변화 연구)

  • Lee, Seungcheol;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2019
  • Rotor wake interaction must be considered to understand the quadrotor flight, and the rotor separation distance is an important parameter that affects the rotor wake interaction. In this study, the wake characteristics were investigated with varying the rotor separation distance. The velocity field in the rotor wake was measured using digital PIV for hovering mode at Re = 34,000, and the wake boundaries from the inner and outer rotor tips were quantitatively compared with varying the rotor separation distance. The symmetric rotor-tip vortex shedding about the rotor axis was found at a large rotor separation distance. However, the wake boundary became more asymmetric about the rotor axis with decreasing the rotor separation distance. At the minimum rotor separation distance, in particular, a faster vortex decay was observed due to a strong vortex interaction between adjacent rotors.

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

A Data Gathering Approach for Wireless Sensor Network with Quadrotor-based Mobile Sink Node

  • Chen, Jianxin;Chen, Yuanyuan;Zhou, Liang;Du, Yuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2529-2547
    • /
    • 2012
  • In this paper, we use a quadrotor-based mobile sink to gather sensor data from the terrestrial deployed wireless sensor network. By analyzing the flight features of the mobile sink node, we theoretically study the flight constraints of height, velocity, and trajectory of the mobile sink node so as to communicate with the terrestrial wireless sensor network. Moreover, we analyze the data amount which the mobile sink can send when it satisfies these flight constraints. Based on these analysis results, we propose a data acquisition approach for the mobile sink node, which is discussed detailed in terms of network performance such as the transmission delay, packet loss rate, sojourning time and mobile trajectory when given the flying speed and height of the mobile sink node. Extensive simulation results validate the efficiency of the proposed scheme.

A Real Time Quadrotor Autonomous Navigation and Remote Control Method (실시간 쿼드로터 자율주행과 원격제어 기법)

  • Son, Byung-Rak;Kang, Seok-Min;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.205-212
    • /
    • 2013
  • In recent, the demand of Unmanned Aerial Vehicles (UAVs) that can autonomous navigation and remote control has been increased in military, civil and commercial field. Particularly, existing researches focused on autonomous navigation method based on vanish point and remote control method based on event processing in indoor environments. However, the existing methods have some problems. For instance, a detected vanish point in intersection point has too much detection errors. In addition, the delay is increased in existing remote control system for processing images in real time. Thus, we propose improved vanish point algorithm by removing detection errors in intersection point. We also develop a remote control system with android platform by separating flying control and image process. Finally, we compare the proposed methods with existing methods to show the improvement of our approaches.

Constant Altitude Flight Control for Quadrotor UAVs with Dynamic Feedforward Compensation

  • Razinkova, Anastasia;Kang, Byung-Jun;Cho, Hyun-Chan;Jeon, Hong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • This study addresses the control problem of an unmanned aerial vehicle (UAV) during the transition period when the flying mode changes from hovering to translational motion in the horizontal plane. First, we introduce a compensation algorithm that improves height stabilization and reduces altitude drop. The main principle is to incorporate pitch and roll measurements into the feedforward term of the altitude controller to provide a larger thrust force. To further improve altitude control, we propose the fuzzy logic controller that improves system behavior. Simulation results presented in the paper highlight the effectiveness of the proposed controllers.

Android based real-time remote Quadrotor fusion control method (안드로이드 기반 실시간 원격 쿼드로터 퓨전제어기법)

  • Yang, Sung-Min;Oh, Hong-Sik;Kang, Seok-Min;Lee, Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.219-222
    • /
    • 2013
  • 최근 몇 년간 무인항공기(UAV) 시장이 점차 커지면서 군뿐만 아니라 민간, 상업적으로도 무인항공기의 수요가 증가하고 있다. 이에 무인항공기의 한 종류인 에어드론(AR.Drone)을 활용한 실시간 원격 쿼드로터(Quadrotor) 퓨전제어기법을 제안하였다. 특히, 본 논문에서는 아이폰(i-phone) 기반의 제어기법이 아닌, 안드로이드(Android) 기반의 퓨전제어기법을 통하여 에어드론을 실시간으로 원격조정가능하게 했는데, 이는 아이폰 App 개발 시 제공되는 API와 PC 기반의 쿼드로터 제어기법을 퓨전하는 방식으로 쿼드로터의 비행제어와 영상처리를 분리시켜 기존의 방식보다 영상처리 속도를 향상시키는 방식이다. 그리고 제안된 퓨전제어기법의 우수성을 보여주기 위해, 기존의 방식들과 영상처리 속도를 비교분석하였다.