• Title/Summary/Keyword: quadratic function

Search Result 784, Processing Time 0.027 seconds

Robust Stable Conditions Based on the Quadratic Form Lyapunov Function (2차 형식 Lyapunov 함수에 기초한 강인한 안정조건)

  • Lee, Dong-Cheol;Bae, Jong-Il;Jo, Bong-Kwan;Bae, Chul-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2212-2214
    • /
    • 2004
  • Robust stable analysis with the system bounded parameteric variation is very important among the various control theory. This study is to investigate the robust stable conditions using the quadratic form Lyapunov function in which the coefficient matrix is affined linear system. The quadratic stability using the quadratic form Lyapunov function is not investigated yet. The Lyapunov unction is robust stable not to be dependent by the variable parameters, which means that the Lyapunov function is conservative. We suggest the robust stable conditions in the Lyapunov function in which the variable parameters are dependent in order to reduce the conservativeness of quadratic stability.

  • PDF

Function Approximation Using an Enhanced Two-Point Diagonal Quadratic Approximation (개선된 이점 대각 이차 근사화를 이용한 함수 근사화)

  • Kim, Jong-Rip;Kang, Woo-Jin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.475-480
    • /
    • 2004
  • Function approximation is one of the most important and active research fields in design optimization. Accurate function approximations can reduce the repetitive computational effort fur system analysis. So this study presents an enhanced two-point diagonal quadratic approximation method. The proposed method is based on the Two-point Diagonal Quadratic Approximation method. But unlike TDQA, the suggested method has two quadratic terms, the diagonal term and the correction term. Therefore this method overcomes the disadvantage of TDQA when the derivatives of two design points are same signed values. And in the proposed method, both the approximate function and derivative values at two design points are equal to the exact counterparts whether the signs of derivatives at two design points are the same or not. Several numerical examples are presented to show the merits of the proposed method compared to the other forms used in the literature.

SVQR with asymmetric quadratic loss function

  • Shim, Jooyong;Kim, Malsuk;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1537-1545
    • /
    • 2015
  • Support vector quantile regression (SVQR) can be obtained by applying support vector machine with a check function instead of an e-insensitive loss function into the quantile regression, which still requires to solve a quadratic program (QP) problem which is time and memory expensive. In this paper we propose an SVQR whose objective function is composed of an asymmetric quadratic loss function. The proposed method overcomes the weak point of the SVQR with the check function. We use the iterative procedure to solve the objective problem. Furthermore, we introduce the generalized cross validation function to select the hyper-parameters which affect the performance of SVQR. Experimental results are then presented, which illustrate the performance of proposed SVQR.

A Fixed Point Approach to the Stability of Quadratic Equations in Quasi Normed Spaces

  • Mirmostafaee, Alireza Kamel
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.691-700
    • /
    • 2009
  • We use the fixed alternative theorem to establish Hyers-Ulam-Rassias stability of the quadratic functional equation where functions map a linear space into a complete quasi p-normed space. Moreover, we will show that the continuity behavior of an approximately quadratic mapping, which is controlled by a suitable continuous function, implies the continuity of a unique quadratic function, which is a good approximation to the mapping. We also give a few applications of our results in some special cases.

A study on deciding reoganization points for data bases with quadratic search cost function (2차 탐색비용함수를 갖는 데이터베이스의 재구성 시기결정에 관한 연구)

  • 강석호;김영걸
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 1985
  • Reorganization is essential part of data base maintenanc work and the reasonable reorganization points can be determined from the trade-off between reorganization cost and performance degradation. There has been many reorganization models so far, but none of these models have assumed nonlinear search cost function. This paper presents the existensions of two existing linear reorganization models for the case where the search cost function is quadratic. The higher performance of these extended models was shown in quadratic search cost function case.

  • PDF

Study of the Robust Stability of the Systems with Structured Uncertainties using Piecewise Quadratic Lyapunov Function

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.499-499
    • /
    • 2000
  • The robust stability problems for nominally linear system with nonlinear, structured perturbations arc considered with Lyapunov direct method. The Lyapunov direct method has been utilized to determine the bounds for nonlinear, time-dependent functions which can be tolerated by a stable nominal system. In most cases quadratic forms are used either as components of vector Lyapunov function or as a function itself. The resulting estimates are usually conservative. As it is known, often the conservatism of the bounds we propose to use a piecewise quadratic Lyapunov function. An example demonstrates application of the proposed method.

  • PDF

An Analysis on the Pedagogical Aspect of Quadratic Function Graphs Based on Linear Function Graphs (일차함수의 그래프에 기초한 이차함수의 그래프에 대한 교수학적 분석)

  • Kim, Jin-Hwan
    • School Mathematics
    • /
    • v.10 no.1
    • /
    • pp.43-61
    • /
    • 2008
  • This study is based on the pedagogical aspect that both connections of mathematical concepts and a geometric approach enhance the understanding of structures in school mathematics. This study is to investigate the graphical properties of quadratic functions such as symmetry, coordinates of vertex, intercepts and congruency through the geometric properties of graphs of linear functions. From this investigation this study would give suggestions on a new pedagogical perspective about current teaching and learning methods of quadratic function graphs which is focused on routine algebraic transformation of the completing squares. In addition, this study would provide the topic of quadratic function graphs with the understanding of geometric perspective.

  • PDF

EVALUATIONS OF SOME QUADRATIC EULER SUMS

  • Si, Xin;Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.489-508
    • /
    • 2020
  • This paper develops an approach to the evaluation of quadratic Euler sums that involve harmonic numbers. The approach is based on simple integral computations of polylogarithms. By using the approach, we establish some relations between quadratic Euler sums and linear sums. Furthermore, we obtain some closed form representations of quadratic sums in terms of zeta values and linear sums. The given representations are new.

Quadratic Loss Support Vector Interval Regression Machine for Crisp Input-Output Data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.449-455
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval regression models for crisp input-output data. The proposed method is based on quadratic loss SVM, which implements quadratic programming approach giving more diverse spread coefficients than a linear programming one. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

ESTIMATION OF NON-INTEGRAL AND INTEGRAL QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS

  • Song, IL Young;Shin, Vladimir;Choi, Won
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.45-60
    • /
    • 2017
  • This paper focuses on estimation of an non-integral quadratic function (NIQF) and integral quadratic function (IQF) of a random signal in dynamic system described by a linear stochastic differential equation. The quadratic form of an unobservable signal indicates useful information of a signal for control. The optimal (in mean square sense) and suboptimal estimates of NIQF and IQF represent a function of the Kalman estimate and its error covariance. The proposed estimation algorithms have a closed-form estimation procedure. The obtained estimates are studied in detail, including derivation of the exact formulas and differential equations for mean square errors. The results we demonstrate on practical example of a power of signal, and comparison analysis between optimal and suboptimal estimators is presented.