• Title/Summary/Keyword: quad-rotor system

Search Result 40, Processing Time 0.019 seconds

Korean Wide Area Differential Global Positioning System Development Status and Preliminary Test Results

  • Yun, Ho;Kee, Chang-Don;Kim, Do-Yoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.274-282
    • /
    • 2011
  • This paper is focused on dynamic modeling and control system design as well as vision based collision avoidance for multi-rotor unmanned aerial vehicles (UAVs). Multi-rotor UAVs are defined as rotary-winged UAVs with multiple rotors. These multi-rotor UAVs can be utilized in various military situations such as surveillance and reconnaissance. They can also be used for obtaining visual information from steep terrains or disaster sites. In this paper, a quad-rotor model is introduced as well as its control system, which is designed based on a proportional-integral-derivative controller and vision-based collision avoidance control system. Additionally, in order for a UAV to navigate safely in areas such as buildings and offices with a number of obstacles, there must be a collision avoidance algorithm installed in the UAV's hardware, which should include the detection of obstacles, avoidance maneuvering, etc. In this paper, the optical flow method, one of the vision-based collision avoidance techniques, is introduced, and multi-rotor UAV's collision avoidance simulations are described in various virtual environments in order to demonstrate its avoidance performance.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Battery Sensitivity Analysis on Initial Sizing of eVTOL Aircraft (전기 추진 수직이착륙기의 초기 사이징에 대한 배터리 민감도 분석)

  • Park, Minjun;Choi, Jou-Young Jason;Park, Se Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.819-828
    • /
    • 2022
  • Sensitivity of aircraft sizing depending on battery performance was studied for a generic quad tilt rotor type electric vertical takeoff and landing vehicle. The mission requirements proposed by Uber Elevate and NASA were used for initial sizing, and the calculated gross weight is ranged between 5,000lb and 11,000lb for battery specific energy range of 200-400Wh/kg in pack level and continuous discharge rate range of 4-5C. For the assumed gross weight of 7,000lb, the required battery performance was calculated with two different criteria: available power and energy, and the effects of battery specific energy and discharge rate are analyzed. The maximum discharge rate is also recommended considering failure cases such as one battery pack inoperative and one prop rotor inoperative.

Collision Avoidance Maneuver Design for the Multiple Indoor UAV by using AR. Drone (AR. Drone을 이용한 실내 군집비행용 충돌회피 기동 설계)

  • Cho, Dong-Hyun;Moon, Sung Tae;Jang, Jong Tai;Rew, Dong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.752-761
    • /
    • 2014
  • With increasing of interest in quad-rotor which has excellent maneuverability recently, a various types of multi-rotor aircraft was developed and commercialized, and there are many kinds of leisure products to be easily operated. In these products, the AR.Drone manufactured by Parrot has an advantage that it is easily operated by user due to the its internal stabilization loop in the on-board computer. Thus it is possible to design the unmanned UAV system easily by using this AR.Drone and its inner loop for the stabilization. For this advantage, KARI(Korea Aerospace Research Institute) has been developing the indoor swarming flight system by using multiple AR.Drones. For this indoor swarming flight, it is necessary that not only the position controller for each AR.Drone, but also the collision avoidance algorithm. Therefore, in this paper, the collision avoidance controller is provided for the swarm flight by using these AR.Drones.

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System (다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어)

  • Yu, Dong Hyeon;Park, Jong Ho;Ryu, Ji Hyoung;Chong, Kil To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.517-526
    • /
    • 2015
  • This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

Experimental Framework for Controller Design of a Rotorcraft Unmanned Aerial Vehicle Using Multi-Camera System

  • Oh, Hyon-Dong;Won, Dae-Yeon;Huh, Sung-Sik;Shim, David Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • This paper describes the experimental framework for the control system design and validation of a rotorcraft unmanned aerial vehicle (UAV). Our approach follows the general procedure of nonlinear modeling, linear controller design, nonlinear simulation and flight test but uses an indoor-installed multi-camera system, which can provide full 6-degree of freedom (DOF) navigation information with high accuracy, to overcome the limitation of an outdoor flight experiment. In addition, a 3-DOF flying mill is used for the performance validation of the attitude control, which considers the characteristics of the multi-rotor type rotorcraft UAV. Our framework is applied to the design and mathematical modeling of the control system for a quad-rotor UAV, which was selected as the test-bed vehicle, and the controller design using the classical proportional-integral-derivative control method is explained. The experimental results showed that the proposed approach can be viewed as a successful tool in developing the controller of new rotorcraft UAVs with reduced cost and time.

Altitude Control of a Quad-rotor System by Using a Time-delayed Control Method (시간지연 제어기를 이용한 쿼드로터 시스템의 고도제어에 대한 연구)

  • Lim, Jeong Geun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.724-729
    • /
    • 2014
  • This paper presents the altitude control of a quadrotor system under the disturbance. The altitude is measured by an ultra sonic sensor attached at the bottom of the quadrotor system and the measured altitude data are used in the time-delayed controller. To test the robustness of the controller, a weight attached to the center of the system is dropped intentionally several times to cause disturbances to the system. Performances of the altitude control by the PID control and time-delayed control method are compared experimentally. Experimental studies are conducted to verify the outperformance of the time-delayed controller for controlling the altitude of the quadrotor system under disturbances.

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR (저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행)

  • Huh, Sungsik;Cho, Sungwook;Shim, David Hyunchul
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.3
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.