• Title/Summary/Keyword: pyrotechnic unit

Search Result 7, Processing Time 0.02 seconds

COMS EPS PRELIMINARY DESIGN

  • Koo, Ja-Chun;Kim, Eui-Chan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.220-223
    • /
    • 2006
  • The COMS(Communication, Ocean and Meteorological Satellite) EPS(Electrical Power Subsystem) is derived from an enhanced Eurostar 3000 EPS which is fully autonomous operation in normal conditions or in the event of a failure and provides a high level of reconfiguration capability and flexibility. This paper introduces the COMS EPS preliminary design result. The COMS EPS consists of a battery, a solar array wing, a PSR(Power Supply Regulator), a PRU(Pyrotechnic Unit), a SADM(Solar Array Drive Mechanism) and relay and fuse brackets. This can offer a bus power capability of 3 kW. The solar array is made of a deployable wing with two panels. One type of solar cells is selected as GaAs/Ge triple junction cells. Li-ion battery is base lined with ten series cell module of five cells in parallel. PSR associated with battery and solar array generates a power bus fully regulated 50 V. Power bus is centralised protection and distribution by relay and fuse brackets. PRU provides power for firing actuators devices. The solar array wing is routed by the SADM under control of the AOCS(Attitude Orbit Control Subsystem). The control and monitoring of the EPS especially of the battery, is performed by the PSR in combination with on-board software.

  • PDF

A Study on Shock Attenuation according to the Flyer Characteristics of a Subminiaturized EFI detonator (초소형 EFI 착화기의 비행편 특성에 따른 충격파 감쇠 연구)

  • Yu, Hyeonju;Kim, Bohoon;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jack Jaick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.426-432
    • /
    • 2017
  • An experimental and numerical study on shock attenuation in a solid by a subminiature flyer impact was conducted to determine the performance of a subminiature exploding foil initiator such as, flyer velocity and impulse loading. The obtained attenuation pattern shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by figuring out shock intensity and duration according to flight characteristics.

  • PDF

An Experimental Study on Performance of a Miniaturized Exploding Foil Initiator using VISAR (VISAR를 활용한 초소형 EFI 기폭 장치의 성능 특성 연구)

  • Yu, Hyeonju;Jang, Seung-gyo;Kim, Kyu-Hyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.80-87
    • /
    • 2017
  • The performance of a pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor explosives. In this research, a micro Kapton flyer was accelerated by an exploding foil initiator (EFI) to figure out shock sensitivity of hexanitrostilbene (HNS) to impact. The averaged shock pressure and duration imparted to the explosive by flyer impact are measured by using a velocity interferometer for any reflector (VISAR) and impedance matching technique. Consequently, this research shows the possibility to determine the critical flyer velocity for initiating the miniaturized pyrotechnic unit by determining the relations between the impact velocity, the amplitude and width of impact loading.

과학위성 1호 전력부

  • 신구환;임철우;신근수;김진규;이현우;임종태
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.61-61
    • /
    • 2003
  • 과학위성 1호는 2003년 9월 26일 러시아 플레세츠크 발사장에서 발사되었다. 고도 690Km 상공에서 원형궤도를 그리며 우주에서의 임무수행을 시작했다. 과학위성 1호의 1차 전지는 태양으로부터 생산된 전기에너지를 사용하며, 2차 전지는 NiCd Battery를 사용한다. 이와 같이 1차 전지와 2차 전지를 최적의 상태로 제어하여 위성의 전력공급시스템으로써의 역할을 수행하게 될 과학위성 1호 전력시스템은 크게 Solar Power Regulator(SPR), Power Supply Unit(PSU), Power Distribution Unit(PDU), 및 Battery Cell Monitor / Pyrotechnic Device Support Equipment(BM/PDSE)로 구성 되어있다. 따라서, 본 논문에서는 과학위성 1호의 전력공급을 담당하는 System Unit 별 기능, 신호흐름, 전력분배 원칙 등에 대하여 연구하였다.

  • PDF

A Study on the Thermal Deformation of Current Collectors by Burning Heat Pellets in Thermal Batteries (열전지의 열원 연소에 따른 전류집전체 열변형에 관한 연구)

  • Ji, Hyun-Jin;Kim, Jong-Myong;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.527-534
    • /
    • 2012
  • Thermal batteries are primary batteries that use molten salts as an electrolyte and employ an internal pyrotechnic source to heat the battery stack to operating temperatures, typically between 450 and $550^{\circ}C$. The unit cell of thermal batteries consists of an anode, an electrolyte, a cathode, a heat pellet and a current collector. The heat source for such batteries is typically heat pellets based on $Fe/KClO_4$. The elevated temperature by combustion of heat pellet is supposed to cause a flatness non-uniformity, buckling, with a lateral extension diameter of current collector. This paper mainly focused on the combustion and buckling model of current collector to simulate the effect of heat source. Mechanical stresses in the current collector caused by thermal stress is a critical design consideration of thermal batteries because the internal short circuit could be occurred.

A Full Scale Hydrodynamic Simulation of High Explosion Performance for Pyrotechnic Device (파이로테크닉 장치의 고폭 폭발성능 정밀 하이드로다이나믹 해석)

  • Kim, Bohoon;Yoh, Jai-ick
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A detailed hydrodynamic analysis SW was developed to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The pyrotechnic device is composed of four main components, namely a donor unit (HNS+HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BPN) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (${\omega}_c=8.3kHz$). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

COMS Electrical Power Subsystem Preliminary Design (통신해양기상위성 전력계 예비설계)

  • Gu, Ja-Chun;Kim, Ui-Chan
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • The COMS(Communication, Ocean and Meteorological Satellite) EPS(Electrical Power Subsystem) is derived from an enhanced Eurostar 3000 version. Eurostar 3000 EpS is fully autonomous operation in nominal conditions or in the event of a failure and provides a high level of reconfigure capability. This paper introduces the COMS EPS preliminary design result. COMS EPS consists of a battery, a solar arrat wing, a PSR(Power Supply Regulator), a PRU(Pyrotechnic Unit), a SDAM(Solar Array Drive Mechanism) and relay and fuse brackets. COMS EPS can offer a bus power capability of 3 kW. The solar array is made of a deployable wing with two panels. One type fo solar cells is selected ad GaAs/Ge triple junction cells. Li-ion battery is base lined with ten series cell module of five cells in parallel. PSR associated to battery and solar array wing generates a power bus fully regulated at 50 V. Power bus os centralized protection and distribution by relay and fuse brackets. PRU provides power for firing actuarors devices. The solar array wing is rotated by the SADM under control of the attitude orbit control subsystem. The control and monitoring of the EPS, especially of the battery, is performed by the PSR in combination with the on-board software.

  • PDF