• Title/Summary/Keyword: pyromellitic dianhydride

Search Result 32, Processing Time 0.022 seconds

A Water-Soluble Polyimide Precursor: Synthesis and Characterization of Poly(amic acid) Salt

  • Lee, Myong-Hoon;Jun Yang
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.263-268
    • /
    • 2004
  • We have synthesized a water-soluble polyimide precursor, poly(amic acid) amine salt (PAD), from pyromellitic dianhydride (PMDA), 4,4'-oxydianiline, and N,N -dimethylethanolamine (DMEA) and have investigated in detail its properties with respect to the degree of salt formation (D$\_$sf/). The maximum value of D$\_$sf/ we obtained upon precipitation of the precursor solution into acetone was 79%. We synthesized a PAD having a D$\_$sf/ of 100% (PAD100) by the solid state drying of an organic solution. The precursors showed different solubility depending on the D$\_$sf/ to make up to 4 wt% solutions in water containing a small amount of DMEA. PAD100 is completely soluble in pure water. We investigated the imidization behavior of PAD in aqueous solution using various spectroscopic methods, which revealed that PAD 100 has faster imidization kinetics relative to that of the poly(amic acid)-type precursors. The resulting polyimide films prepared from an aqueous precursor solution possess almost similar physical and thermal properties as those prepared from N-methyl-2-pyrrolidone(NMP) solution. Therefore, we have demonstrated that PAD can be used as a water-based precursor of polyimide; this procedure avoids the use of toxic organic solvents, such as NMP.

Polyimide Multilayer Thin Films Prepared via Spin Coating from Poly(amic acid) and Poly(amic acid) Ammonium Salt

  • Ha, You-Ri;Choi, Myeon-Cheon;Jo, Nam-Ju;Kim, Il;Ha, Chang-Sik;Han, Dong-Hee;Han, Se-Won;Han, Mi-Jeong
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.725-733
    • /
    • 2008
  • Polyimide (PI) multilayer thin films were prepared by spin-coating from a poly(amic acid) (PAA) and poly(amic acid) ammonium salt (PAAS). PI was prepared from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) PAA. Different compositions of PAAS were prepared by incorporating triethylamine (TEA) into PMDA-ODA PAA in dimethylacetamide. PI multilayer thin films were spin-coated from PMDA-ODA PAA and PAAS. The PAAS comprising cationic and anionic moieties were spherical with a particle size of $20{\sim}40\;nm$. Some particles showed layers with ammonium salts, despite poor ordering. Too much salt obstructed the interaction between the polymer chains and caused phase separation. A small amount of salt did not affect the interactions of the interlayer structure but did interrupt the stacking between chains. Thermogravimetric analysis (TGA) showed that the average decomposition temperature of the thin films was $611^{\circ}C$. All the films showed almost single-step, thermal decomposition behavior. The nanostructure of the multilayer thin films was confirmed by X -ray reflectivity (XRR). The LF 43 film, which was prepared with a 4:3 molar ratio of PMDA and ODA, was comprised of uniformly spherical PAAS particles that influenced the nanostructure of the interlayer by increasing the interaction forces. This result was supported by the atomic force microscopy (AFM) data. It was concluded that the relationship between the uniformity of the PAAS particle shapes and the interaction between the layers affected the optical and thermal properties of PI layered films.