• 제목/요약/키워드: pyrolysis system

검색결과 210건 처리시간 0.029초

디스크이동식 폐타이어 열분해 실증공정 개발의 성과와 과제 (Result and Assignment on Development of Waste Tire Pyrolysis Demonstration Plant with Disk Moving Tube Reactor System)

  • 김성연
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.325-328
    • /
    • 2009
  • The 10t/d pyrolysis demonstration plant have been developed for waste tire recycling treatment and value added commercialization. The initial plant model had been started under 2.4t/d capacity with continuous operation, and the commercial plant has been achieved to the 120t/d based on demonstration plant having the tube reactor with chain conveyer attached disk. The next generation pyrolysis plant for waste tire is reviewed and the assignment for plant development is presented briefly.

  • PDF

열분해 소각시설에서의 일반폐기물의 연소특성 (Combustion Characteristics of Municipal Wastes in Pyrolysis Incinerator)

  • 박명호
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.149-156
    • /
    • 2011
  • In case of domestic pyrolysis dry distillation gassification technology, it stays at the stage of its early introduction and development. Moreover, the companies possessed of this technology are limited to Japan and some countries in Europe, and domestic operative performance of this system is nominal, so there exist a lot of difficulties in securing its basic data. In addition, considering its operation and management, there happens a corrosion of metals by the production of corrosive gases in time of combustion of waste, and there arise a problem of occurrence of low temperature corrosion on exterior casing or gas ducts of a combustion chamber due to the high temperature corrosion around the burner of an incinerator, lowering the durability of an incinerator. Therefore, this study looked at the problems arising in time of incineration by understanding the characteristics of the pyrolysis dry distillation gassification incinerating facility, and did research on the improvement plan for durability of an incinerator for more economic, efficient waste incineration.

생활폐기물 열분해용융시설 동부 R21 (The MSW Pyrolysis & Melting Plant DONGBU R21)

  • 최상심;김석환;김경래
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.314-328
    • /
    • 2004
  • Mitsui Engineering and Shipbuilding Co., Ltd. (MES) has completed Recycling 21 (R21) pyrolysis and melting technology for municipal solid wastes. The basic technology is licensed from Siemens, but MES has made major improvements to the design and operation of the R21 system Consequently, up to now, MES has been completed six (6) R21 plants in Japan. The following text will provide a brief overview of the design & operating features of R21 technology, focused on the reliability of system and low emission of hazardous material, which have been proved by the successful construction & operation experience of the plants.

  • PDF

폐기물 열분해/용융 소각 시스템의 용융로 Scale-up 연구 (Scale-up of Melting Chamber for a Pyrolysis Melting Incinemtion System)

  • 양원;김봉근;류태우;전금하
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.168-175
    • /
    • 2007
  • Ash melting chamber is one of the key facility of the pyrolysis-melting incineration system, and it should be designed and operated very carefully for avoiding solidification of slag. In this study, an example of numerical and experimental scale-up process of the melting chamber, in which high speed air is injected to the molten slag and generates bubbles, which enhances agitation of the slag and char combustion, is presented. Cold flow test, combustion and melting test in a lab-scale (30 kg/hr) chamber and a pilot scale (200 kg/hr) chamber. Minimum energy for maintaining molten slag is derived, and it was found that the molten slag can be maintained efficiently by concentrating heat into the bubbling slag.

  • PDF

Catalytic Upgrading of Geodae-Uksae 1 over Mesoporous MCM-48 Catalysts

  • Jeon, Ki-Joon;Jin, Sung Ho;Park, Sung Hoon;Jeon, Jong-Ki;Jung, Sang-Chul;Ryu, Changkook;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1951-1955
    • /
    • 2014
  • Catalytic pyrolysis of Geodae-Uksae 1, a kind of miscanthus found in Korea, was carried out over mesoporous MCM-48 catalysts. For rapid product analysis and catalyst evaluation, pyrolysis-gas chromatography/mass spectrometry was used. X-ray diffraction, nitrogen sorption, pyridine adsorbed Fourier transform infrared, and NH3 temperature programmed desorption were utilized to analyze the properties of the catalysts. Compared to non-catalytic reaction, catalytic upgrading over mesoporous Al-MCM-48 catalysts produced a higher-quality bio-oil with a high stability and low oxygen content. Al-MCM-48 exhibited higher deoxygenation ability than Si-MCM-48 due to its higher acidity.

PGV(Plasma Gasification & Vitrification) 시스템을 통한 폐기물의 자원화 기술 (A Study on Recycling Technology of Wastes by Using PGV(Plasma Gasification & Vitrification) System)

  • 유대우;김영석
    • 플랜트 저널
    • /
    • 제4권4호
    • /
    • pp.62-70
    • /
    • 2008
  • PGV(Plasma Gasification & Vitrification) system has been developed based on a pyrolysis melting gasification technology that provides the possibilities of acquiring renewable energy. As volume of wastes increases with the rapid industrialization and population growth, eco friendly disposal is drawing more social attention. Pyrolysis plasma technology is regarded as the best environmentally friendly process for the waste disposal among numerous waste disposal processes. Introduced in this paper is the behavior of the plasma torch and a computational fluid simulation dynamics is discussed for designing the melting furnace. Some PGV applications have also been discussed.

  • PDF

Chemical Compositions and Pyrolysis Characteristics of Oil Shales Distributed in Korea

  • Yang, Moon Yul;Yang, Myoung Kee;Lee, Sang Hak;Wakita, Hisanobu
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.487-492
    • /
    • 1995
  • The chemical compositions and pyrolysis characteristics of oil shales and source rocks distributed in the southwestern and southeastern parts of the Korean peninsular have been investigated. In order to compare the results of Korean samples with those of shales giving high oil yields, two Colorado oil shale samples and one Paris source rock samples were also investigated. Chemical compositions of the samples were analysed by means of gravimetry, CHN analysis, X-ray diffraction method, inductively coupled plasma atomic emission spectrometry and atomic absorption spectrometry. A custom made pyrolyser and a Rock-Eval system were used for the pyrolysis studies. Pyrolyses of the samples were carried out by means of a temperature controlling device to $600^{\circ}C$ at a heating rate of $5^{\circ}C/min$ with a helium flow rate of $1200m{\ell}/min$. The results of pyrolysis study indicated that Colorado shale samples belong to type I and all the other samples belong to type II.

  • PDF

목질 열분해유의 디젤 엔진 적용성 연구 (Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine)

  • 이석환;박준혁;임기훈;최영;우세종;강건용
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • 청정기술
    • /
    • 제26권1호
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.

하수슬러지 감량화를 위한 one구동 2단형 열풍건조/열분해에 관한 연구 (A Study on the 2-stage dry and pyrolysis system for reduction of sewage sludge)

  • 하상안;김승호
    • 유기물자원화
    • /
    • 제12권2호
    • /
    • pp.52-60
    • /
    • 2004
  • 본 연구는 슬러지처분을 위해서 유기성페기물 감량화, 에너지 회수기술 공정시도, 자연순환형 슬러지 처분을 위한 최종 시스템개발의 기초연구이다. 본 연구는 full-규모의 건조시스템과 반자동식 로타리 킬른식 열분해로를 이용하여 실험하였다. 운전매개변수는 온도를 건조는 $160{\sim}175^{\circ}C$와 열분해온도는$450{\sim}800^{\circ}C$로 변화시켜 실험을 실행하였고, 고형물의 열분해 공정의 체류시간은 9min으로 실험을 t실행하였다. 본 연구에서 중요한 실험매개변수는 운전시간, 슬러지 수분함량, 고형물량에 따라 온도를 변화시켜 열분해특성을 연구하였다. 운전시간 9분의 일정한 상태에서 $670^{\circ}C$조건은 탄소쇄 $C_1{\sim}C_3$의 물질의 생성은 증가하였지만, $C_4{\sim}C_6$를 함유한 오일성분은 감소하는 것으로 나타났다.

  • PDF