• Title/Summary/Keyword: pyroclastic tuff

Search Result 29, Processing Time 0.029 seconds

Eruptive Phases and Volcanic Processes of the Guamsan Caldera, Southeastern Cheongsong, Korea (구암산 칼데라의 분출상과 화산과정)

  • ;;;A.J. Reedman
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.74-89
    • /
    • 2002
  • Rock units, relating with the Guamsan caldera, are composed of Guamsan Tuff and rhyolitic intrusions. The Guamsan Tuff consists almost entirely of ash-flow tuffs with some volcanic breccias and fallout tuffs. The volcanic breccia comprises block and ash-flow breccias of near-vent facies and caldera-collapse breccia near the ring fracture. The lower ash-flow tuffs are of an expanded pyroclastic flow phase from the pyroclastic flow-forming eruption with an ash-cloud fall phase of the fallout tuffs on the flow units, but the upper ones are of a non-expanded ash-flow phase from the boiling-over eruption. The rhyolitic intrusions are divided into intracaldera intrusions and ring dikes that are subdivided into inner, intermediate and outer dikes. We compile the volcanic processes along a single cycle of cadela development from the eruptive phases in the Guamsan area. The explosive eruptions began with block and ash-flow phases from collapse of glowing lava dome caused by Pelean eruption, progressed through expanded pyroclastic flow phases and ash-cloud fallout phases during high column collapse of pyroclastic flow-forming eruption from a single central vent. This was followed by non-expanded ash-flow phases due to boiling-over eruption from multiple ring fissure vents. The caldera collapse induced the translation into ring-fissure vents from a single central vent in the earlier eruption. After the boiling-over eruption, there followed an effusive phase in which rhyolitic magma was injected and erupted to be progressively emplaced as small plugs/dikes and ring dikes with many lava domes on the surface. Finally rhyodacitic magma was on emplaced as a series of dikes along the junction of both outer and intermediate dikes on the southwestern side of the caldela.

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.

Albitization of feldspar in the Cretaceous Kusandong Tuff, Korea (백악기 구산동응회암 내 장석의 알바이트화 작용)

  • Jeong, Jong-Ok;Sohn, Young-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.195-211
    • /
    • 2005
  • The Kusandong Tuff, known as a representative key bed in the Cretaceous Gyeongsang Basin, is a crystal-rich tuff of pyroclastic flow and surge origin. It is 1-4 m thick and laterally extends for more than 200 km intercalated in the upper part of the Hayang Croup. Observations and analyses of the feldspar crystals in the tuff, using polarizing microscopes, EPMA, and BSE images, reveal that the plagioclase crystals in the tuff were completely albitized (>$97\%$ Ab) whereas those in the southernmost localities where the tuff is rich in fine ash matrix are unaltered or partly albitized. K-feldspars are partly albitized at all localities, irrespective of the matrix content of the tuff, Perthitic textures, chessboard twinning, albitization along micro-fractures and cleavages, and the relationship between matrix content and the degree of albitization suggest that feldspars in the Kusandong Tuff were albitized by Na-rich fluid after burial. Albitization is interpreted to start preferentially along micro-fractures and cleavages and be hampered in matrix-rich tuffs with a low permeability. Original composition of the plagioclases in the Kusandong Tuff is also interpreted to have ranged between oligoclase and andesine ($Ab_{62.5}-Ab_{83.3}$) before the albitization.

A Case Study on the Collapsed Cut-Slope in $\bigcirc\bigcirc$ detour at JeonranamDo (전라남도 $\bigcirc\bigcirc$우회도로 붕괴절토사면 사례 연구)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jeong-Yeup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.966-973
    • /
    • 2008
  • In recent, the collapses of cut-slope is gradually increased due to the heavy rains accompanied by typhoon. Specially, many cut-slope failures and landslides was happened to Goheung, Yeosu, Suncheon region, Jeonranamdo in the middle of September 2007. The slope of investigation is width 20 m, height 22 m, and the circular failure was occurred. The parent rocks of the slope are pyroclastic rock, namely andesite, andesitic tuff et al. and the weathering grade is completely weathered to residual soils owing to rapid weathering process and has the existence of fault zone and mafic dyke. Also, lots of extension cracks are presented and the hydrologic condition is very deteriorated. As a result of the limit equilibrium analysis, the safety factor is 1.09(in dry season) and 0.64(in wet season). For the stabilization of the cut-slope, we decided to use the retaining wall, anchors and drainage apparatus.

  • PDF

The new approach to calculate pulse wave returning energy vs. mechanical energy of rock specimen in triaxial test

  • Heidari, Mojtaba;Ajalloeian, Rassoul;Fard, Akbar Ghazi;Isfahanian, Mahmoud Hashemi
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • In this paper, we discuss a mathematical method for determining the return energy of the wave from the sample and comparing it with the mechanical energy consumed to change the dimension of the sample in the triaxial test of the rock. We represent a method to determine the mechanical energy and then we provide how to calculate the return energy of the wave. However, the static energy and pulse return energy will show higher amounts with axial pressure increase. Three types of clastic sedimentary rocks including sandstone, pyroclastic rock, and argillitic tuff were selected. The sandstone showed the highest strength, Young's modulus and ultrasonic P and S waves' velocities versus others in the triaxial test. Also, from the received P wavelet, the calculated pulse wave returning energy indicated the best correlation between axial stress compared to wave velocities in all specimens. The fact that the return energy decreases or increases is related to increasing lateral stress and depends on the geological characteristics of the rock. This method can be used to determine the stresses on the rock as well as its in-situ modulus in projects that are located at high depths of the earth.

Risk Analyses from Eruption History and Eruptive Volumes of the Volcanic Rocks in Ulleung Island, East Sea (울릉도 화산암류의 분화이력과 분출량에 따른 위험도 분석)

  • Hwang, Sang Koo;Jo, In Hwa
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • We estimate the eruption history and magmatic eruptive volumes of each rock units to evaluate the volcanic eruption scale and volcanic hazard of the Ulleung Island. Especially, Maljandeung Tuff represents about 19~5.6 ka B.P. from $^{14}C$ dating, and Albong Trachyandesite, about 0.005 Ma from K-Ar dating in recent age dating data. These ages reveal evidences of volcanic activities within the last 10,000 years, indicating that the Ulleung Island can classify as an active volcano with possibility of volcanic eruption near future. Accumulated DRE-corrected eruptive volume is calculated at $40.80km^3$, within only the island. The calculated volumes of each units are $3.71km^3$ in Sataegam Tuff, and $0.10km^3$ in Maljandeung Tuff but $12.39km^3$ in accounting the distal and medial part extended into southwestern Japan. Volcanic explosivity indices range 1 to 6, estimating from the volumes of each pyroclastic deposits. The colossal explosivity indices are 5 in Sataegam Tuff, and 6 in Maljandeung Tuff in accounting the distal and medial part. Therefore, it is necessary for appropriate researches regarding possibility of volcanic eruption of the island, and establishment system of the evaluation and preparation for volcanic hazard based on the researches is required.

Mineralization Environments and Evaluation of Resources Potentials for the Absorbent-functional Mineral Resources Occurred in the Coal-bearing Formation of the Janggi Group (장기층군의 함탄층에서 산출되는 흡착기능성 광물 자원의 부존 환경 및 자원잠재성 평가)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.197-207
    • /
    • 2006
  • In the coal-bearing formations of the Janggi Group, which are reported as typical clastic sediments, several beds of volcaniclastic rocks are actually found in the Yeongil area. The coal-bearing formations generally exhibit alternating lithologic characteristics of pyroclastic and epiclastic sedimentary facies. Tuff and tuffaceous sandstone rich in pumice fragments are characteristic in the coal-bearing fermations. Diagenetic minerals found in the pyroclastic rocks of the upper and lower coal-bearing formations are montmorillonite, clinoptilolite, opal-CT, and quartz. Several tuffaceous beds correspond to the low-grade ores of zeolites and bentonite, and moreover, these ores mostly occur as thin beds less than 1 m in thickness. Thus, the potential of altered tuffaceous rocks as the resources typical of zeolite and bentonite seems to be low. However, based on mineral composition and CEC determinations, it can be evaluated that these tuffaceous rocks mostly have the promising potential for utilization as the absorbent-functional mineral resources such as acid clays, if these low-grade ores plus adjacent tuffaceous rocks are collectively exploited.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Gusi Mine, Southern Korea (전남 해남지역 구시광상의 화산활동에 수반된 열수변질작용 및 생성환경)

  • Moon, Hi-Soo;Roh, Yul;Kim, In-Joon;Song, Yungoo;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.9-20
    • /
    • 1991
  • Gusi pyrophyllite deposit is located in the Haenam volcanic field in the southwestern part of the Korea Peninsula. This area is known for the occurrences of pyrophyllite, alunite and dickite. This volcanic field is composed of andesite, rhyolite and pyroclastic rocks of late Cretaceous age The pyroclastic rocks are hydrothermally altered to pyrophyllite and kaolin minerals forming the Gusi deposits. The hydrothermally altered rock can be classified into the following zones on the basis of their mineral assemblages: quartz, pyrophyllite, dickite and illite-smectite zones, from the centre to the margins of the alteration mass. Such mineral assemblages indicate that the country rocks, most of which are the lower Jagguri Tuff, were altered by strongly acidic hydrothermal solutions with high aqueous silica and potassium activity and that the formation temperature of pyrophyllite is higher than $265^{\circ}C$. The mechanism of the hydrothermal alteration is considered to be related to felsic magmatism.

  • PDF

Characteristics of Salt Weathering and Environmental Variation on the Usuki Stone Buddha Statues in Oita, Japan (일본 오이타현 우스키 마애불상군의 환경변화와 염풍화 특성)

  • Cho, Ji Hyun;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.677-685
    • /
    • 2020
  • The host rock of the Usuki Stone Buddha Statues is dark gray welded tuff involved the Aso-4 pyroclastic flow sediments. This Buddha Statues are processing chlorosis from rainfall flowing above and underground water which were urgently needed for conservation measurement. White precipitates, the main source of salt weathering, on the surface of the Buddha Statues are mainly consisted of thenardite, gypsum and dolomite. Extraction experiment result shows that thenardite was dissolved at the beginning of stirring and then redissolved after 4 hours, and gypsum was detected until stirring for 2 hours, and then dissolved after stirring for 4 hours. As a result of monitoring the microclimate environment for 11 months to determine the recrystallization environment of white precipitates, the phase transition between thenadite and mirabilite appears widely in spring, and is maintained in an aqueous solution due to high temperatures in summer and fall. In winter, mirabilite is shown the widest by decreasing temperature. Therefore we requires details monitoring for blocking water transfer port and solved humidity environment in shelter.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF