• Title/Summary/Keyword: pyroclastic flows

Search Result 16, Processing Time 0.027 seconds

A Preliminary Study for Predicting a Damage Range of Pyroclastic Flows, Lahars, and Volcanic Flood caused by Mt. Baekdusan Eruption (백두산 분화에 따른 화쇄류, 화산이류, 화산성 홍수의 피해범위 예측을 위한 예비연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Jung, Soo-Jung;Kim, Sang-Hyun;Lee, Khil-Ha;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.479-491
    • /
    • 2013
  • Products of the eruption of Mt. Baekdusan are identified as volcanic materials at the estuaries of the Songhuagang river to north, the Dumangang river to east and the Amnokgang river to west. More speficially, pyroclastic flows, lahars and volcanic floods can affect an area of 400km in radius, centering around Lake Cheonji caldera. However, unlike the millenium eruption, the flow situation has been changed. Because multi-purpose dams and reserviors with a combined pondage of mora than 2 billion tons of water have been built in the rivers of which sources are originated from Lake Cheonji caldera. In addition, the flow of fluids expected to take place when the volcano has erupted is thought to be affected by artificial constructions in both direct and indirect ways. This study calculates the direction of fluids flow by using numerical analyses of pyroclastic flows, lahars and volcanic floods that can occur when the volcano of Mt. Baekdusan has erupted. We also estimate the scope of damages by pyroclastic flows, lahars, volcanic flooding caused by the pondage of the dams and water storages in and around Mt. Baekdusan. Pyroclastic flows transported over the steep slopes at the early times of eruptions move over the mountain slopes, affecting airplanes, and lahars due to leaks of Lake Cheonji could reach as far as major rivers and streams near Mt. Baekdusan. Unlike historical accounts, volcanic flood is expected to be limited in its scope of influence to reservoirs bigger than Lake Cheonji in pondage.

Volcaniclastic Sedimentation of the Sejong Formation (Late Paleocene-Eocene), Barton Peninsula, King George Island, Antarctica

  • Yoo, Chan-Min;Choe, Moon-Young;Jo, Hyung-Rae;Kim, Yae-Dong;Kim, Ki-Hyune
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.97-107
    • /
    • 2001
  • The Sejong Formation of Late Paleocene to Eocene is a lower volcaniclastic sequence unconformably overlain by upper volcanic sequence, and distributed along the southern and southeastern cliffs of the Barton Peninsula. The Sejong Formation is divided into five sedimentary facies; disorganized matrix-supported conglomerate (Facies A), disorganized clast-supported conglomerate (Facies B), stratified clast-supported conglomerate (Facies C), thin-bedded sandstone (Facies D), and lapilli tuff (Facies E), based on sedimentary textures, primary sedimentary structures and bed geometries. Individual sedimentary facies is characterized by distinct sedimentary process such as gravel-bearing mudflows or muddy debris flows (Facies A), cohesionless debris flows (Facies B),unconfined or poorly confined hyperconcentrated flood flows and sheet floods (Facies C), subordinate streamflows (Facies D), and pyroclastic flows (Facies E). Deposition of the Sejong Formation was closely related to volcanic activity which occurred around the sedimentary basin. Four different phases of sediment filling were identified from constituting sedimentary facies. Thick conglomerate and sandstone were deposited during inter-eruptive phases (stages 1, 3 and 4), whereas lapilli tuff was formed by pyroclastic flows during active volcanism (stage 2). These records indicate that active volcanism occurred around the Barton Peninsula during Late Paleocene to Eocene.

  • PDF

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan (백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Kim, Sunkyeong;Chang, Cheolwoo;Cho, Eunil;Yang, Innsook;Kim, Yunjeong;Kim, Sanghyun;Lee, Kilha;Kim, Seongwook;Macedonio, Giovanni
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.615-625
    • /
    • 2013
  • Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there were unrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan's Plinian eruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse of eruption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by small eruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows are caused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rim of the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruption column occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows will be deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+ (Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석)

  • Cho, Minji;Lu, Zhong;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.443-459
    • /
    • 2013
  • Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

Eruption Styles and Processes of the Dongmakgol Tuff, Cheolwon Basin, Korea (철원분지 동막골응회암의 분출유형과 분출과정)

  • Hwang, Sang Koo;Son, Yeong Woo;Choi, Jang O;Kim, Jae Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-62
    • /
    • 2013
  • The Dongmakgol Tuff is divided into 8 lithofacies based on their grain size and depositional structures: massive tuff breccia(TBm), welded tuff and lapilli tuff(LTw), rheomorphic tuff and lapilli tuff(LTr), massive lapilli tuff(LTm), stratified lapilli tuff(LTs), gradedly bedded lapilli tuff(LTg), crudely bedded lapilli tuff(LTb) and massive fine tuff(Tm). They can be divided into 3 pyroclastic rock group based on their constituents of the lithofacies. The lower group(LI) is composed of LTm, LTw and LTr, which are interpreted to have resulted from emplacement of voluminous pyroclastic flows due to ignimbrite-form eruption to boiling-over eruption. The middle group(LT+MI) consists of LTs, LTg and LTm associated with Tm in the lower part, and of LTm, LTw and LTr in the middle and upper parts; these suggest that started with deposition of pyroclastic surges from phreatoplinian eruption by poor eternal water, passed through emplacement of pyroclastic flows from ignimbrite-form eruption and ended with deposition of voluminous pyroclastic flows from boiling-over eruption. The upper group(lUT+uUT+UI) is composed of LTs, LTg and Tm in the lowermost, TBm, LTb, LTb and Tm in the lower part, and LTm and LTw in the middle and upper part, suggesting that began with deposition of surges from phreatoplinian eruption, passed through deposition of pumice- and ash-fallouts from plinian eruption and transformed into emplacement of pyroclastic flows due to boiling-over eruption. As result, eruptive processes in the Dongmakgol Tuff approximately began with phreatoplinian or/and plinian eruption, transformed into ignimbrite-forming eruption and proceeded into boiling-over eruption in each volcanism, but proceeded presumably without phreatoplinian or plinian eruption in the earlier stage of 1st volcanism.

Ash-Flow Tuffs of the Chisulryoung Volcanic Formation and Associated Welded Tuff Instrusion, Weolseong District, Southern Korea (월성(月城) 남부(南部) 치술령 지역(地域)의 화산암(火山岩))

  • Park, Ki Hwa;Kim, Seon Eok
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 1985
  • The Chisulryoung Volcanic Formation comprises a thick sequence of pyroclastic flow deposits. Six members are distinguished, each representing separate flow units, comprising weakly to intensely welded acidic tuffs. A stock of welded acidic tuff, 1 km in diameter, intrudes hornblende granodiorite and sediments of Late Cretaceous age and the lower part of the Chisulryoung Volcanic Tuff Formation and may represent the vent through which the upper flows of the Chisulryoug Volcanic Formation were erupted.

  • PDF

Petrological study on the Miocene Dangsari volcanic rocks, eastern part of Ulsan city, southeastern Korea (울산 동부 마이오세 당사리화산암류에 대한 암석학적 연구)

  • 윤성효;고정선;박기호;이영애
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.169-186
    • /
    • 2000
  • The Miocene volcanic rocks in the Dangsari area, eastern part of Ulsan city, are mainly composed of andesite lava flows and pyroclastic rocks. The andesite lavas are identified as two-pyroxone andesite, comprising phenocrysts of augite ($Wo_{43.2}$ $En_{41.0}$ $Fs_{15.8}$ ) and hyperthene ($Wo_{2.7}$ $65.8_{En}$ $_{Fs}$ 31.5). The andesitic pyroclastic rocks are largely composed of pyroclastic breccias with alternating tuff-breccia and lapilli tuff, which showing planar layering, and minor amount of andesitic tuff with thin deposits of interlayered tuffaceous shale. According to the petrochemical data, andesitic rocks belong to medium-K calc-alkaline andesite. The position of bulk composition on the AFM diagram and the presence of normative quartz and hypersthene indicate that the volcanic rocks are calc-alkaline. The trace element composition and REE patterns of andesite, which are characterized by a high LILE/HFSE ratio and enrichment in LREE, suggest that they are typical of continental margin arc calc-alkalic volcanic rocks produced in the subduction environment. On the discrimination diagram, the Dangsari volcanic rocks fall into the fields of subduction related continental margin arc volcanic province. The primary magic melts may be derived from about 15% partial melting of mantle wedge in the upper mantle under destructive plate margin. And the melt evolved to calc-alkaline andesite magma by fractional crystallization and the magma was a little contaminated with crustal materials.

  • PDF

Volcanological Interpretation of Historic Record of AD 79 Vesuvius eruption (베수비오 화산의 79년 분화 기록에 대한 화산학적 해석)

  • Eun Jeong Yang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • The Pliny Letter, the first historical record of volcanic eruptions and disasters on Earth, was studied to better understand the Vesuvius' eruption patterns in 79 AD. The two-day eruption, which began at 1 a.m. on August 24th 79 AD, produced large amounts of volcanic ash and pumice, which were carried by the wind and fell on nearby cities. Furthermore, during the eruption, fast-moving pyroclastic flows flowed down the volcano's sides, and several phenomena such as earthquakes and tsunamis occurred. Cities near Mount Vesuvius were buried and destroyed by volcanic ash and pyroclastic flows. Previous studies were collected, analyzed, and investigated and the scope of damage was chosen from Pompeii, Herculaneum, Stabiae, and Oplontis. The sedimentary stratigraphy and thickness vary according to location and distance from Vesuvius in each region. Within the depositional layers, the remains of residents who died during the eruption were also discovered, and 1,150 remains have been discovered in Pompeii, 306 in Herculaneum, 111 in Stabiae, and 54 in Oplontis, but the exact number of people who killed is unknown. The eruption that exhibited the pattern seen in AD 79 was named the Plinian eruption after Pliny and classified as a new type of eruption as a result of Pliny's detailed description of the eruption.

Hydrothermal System of Diaspore-Dumortierite Minerals from Korea (다이야스포아-듀모오티어라이트 광물의 열수생성 과정)

  • Sang, Ki-Nam;Chung, Won-Woo;Lee, Yoon-Jong
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.439-446
    • /
    • 1996
  • Clay minerals are locally abundant in two hydrothermal areas at Tongnae-Yangsan and Miryang, Gyong-sang-namdo, Korea. This study is done to access the clay forming processes, particularly hydrothermal alteration. Pyrophyllite-kaolin in the Zone is accompanied by sericite, diaspore mixed-layer mica/smectite, alunite, dumortierite and silica minerals. Small nodular diaspore and disseminated fine radiac dumortierite are present in the pyrophyllite-kaoline deposits, the northemly trending belt of rhyolite flows and pyroclastic rock near the intruded by granite rock of Bulkusa Series. Hydrothermal action has formed many clay deposits with a zone containing over 80~90% pyrophyllite, kaolinite, muscovite with a little amount of dumortierite, boehmite, andalusite. Most of the clay deposits occur as irregular, lenticular, massive and assosiated dumortierite was found to coexist with clay deposits. Dumortierite data are as follows: lattice constant a=11.783, b=20.209, c=4,7001, axial ratio a:b:c=0.5835 : 1 : 0.2327, XRD $d{\AA}$ 2.549, 5.89, 5.09.

  • PDF

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.