• Title/Summary/Keyword: pyrochlore phase

Search Result 122, Processing Time 0.033 seconds

Preparation and Characterization of Small Sized PZT Powders: A Sol-Gel Modified Approach

  • Choi, Kyu-Man;Lee, Hae-Chun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.2
    • /
    • pp.27-32
    • /
    • 2008
  • A current research basically diverted towards an increase in the operational output with the minimization of the materials used, which ultimately scaled down the dimensions of ceramic electronic components. In this direction the nano-technology pave the revolutionary changes in particular the electronic industries. The applications of nano-sized particles or nano-sized materials are hence, playing a significant role for various purposes. The PZT(lead, zirconium, titanium) based ceramics which, are reported to be ferroelectric materials have their important applications in the areas of surface acoustic waves (SAW), filters, infrared detectors, actuators, ferroelectric random access memory, speakers, electronic switches etc. Moreover, these PZT materials possess the large electro mechanical coupling factor, large spontaneous polarization, low dielectric loss and low internal stress etc. Hence, keeping in view the unique properties of PZT piezoelectric ceramics we also tried to synthesize indigenously the small sized PZT ceramic powder in the laboratory by using the modified sol-gel approach. In this paper, propyl alcohol based sol-gel method was used for preparation of PZT piezoelectric ceramic. The powder obtained by this sol-gel process was calcined and sintering to reach a pyrochlore-free crystal phase. The characterization of synthesized material was carried out by the XRD analysis and the surface morphology was determined by high resolution scanning electron microscopy.

  • PDF

Structural and C-V characteristics of SrTiO$_3$ /PbTiO$_3$ thin film deposited on Si (Si 기판위에 증착한 SrTiO$_3$ /PbTiG$_3$ 고용체 박막의 구조적 특성 및 C-V 특성)

  • 이현숙;이광배;김윤정;박장우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.71-74
    • /
    • 2000
  • Pt/Pb$TiO_3$/$SrTiO_3$/p-Si films were prepared by metallo-organic solution deposition(M0SD) method and investigated its structure and ferroelectric properties. Crystallinity of specimen as a funtions of post annealing temperature and the thickness of $SrTiO_3$(STO) buffer layer was studied using XRD and AFM. Based on C-V and P-E curve, $PbTiO_3$(PTO) capacitors showed good ferroelectric hysteresis arising from the polarization switching properties. When the thickness of ST0 buffer layer between PTO and Si substrate was 260 nrn and the post annealing temperature was $650^{\circ}C$, it was showed that production of the pyrochlore phase due to interdiffusion of Si into FTO was prevented. The dielectric constant of FTO thin films calculated from a maximum Cma in the accumulation region was 180 and the dielectric loss was 0.30 at 100 kHz frequency. The memory window in the C-V curve is 1.6V at a gate voltage of 5V.

  • PDF

Dielectric Properties of $BaTiO_3$ System Ferroelectric Thick Films Doped with $Dy_2O_3$ ($Dy_2O_3$$BaTiO_3$계 강유전체 후막의 유전특성)

  • Noh, Hyun-Ji;Yun, Sang-Eun;Park, Sang-Man;Ahn, Byeong-Lib;Lee, Sung-Gap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1609-1613
    • /
    • 2007
  • (Ba,Sr,Ca)$TiO_3$ powders, which were prepared by sol-gel method using a solution of Ba-, Sr- and Ca-acetate and Ti iso-propoxide, were mixed with organic vehicle and the BSCT thick films were fabricated by the screen-printing techniques on high purity alumina substrates. The structural and dielectirc properties were investigated for various $Dy_2O_3$ doping contents. As a result of thermal analysis, the exothermic peak was observed at around 670^{\circ}C $ due to the formation of the polycrystalline perovskite phase. All BSCT thick films, sintered at $1420^{\circ}C$ for 2h, showed the typical XRD patterns of perovskite polycrystalline structure and no pyrochlore phase was observed. The average grain size of the specimens decreased with increasing amount of $Dy_2O_3$. The average grain size and thickness of the BSCT specimens doped with 0.1 mol% $Dy_2O_3$ were approximately $1.9{\mu}m$ and $70{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss increased with increasing amount of $Dy_2O_3$, the values of the BSCT thick films doped with 0.1 mol% $Dy_2O_3$ were 3697 and 0.4% at 1 kHz, respectively. The leakage current densities in all BSCT thick films were less than $10^{-9}A/cm^2$ at the applied electric field range of 0-20 kV/cm.

Electrical Properties of ZnO-Bi2O3-Sb2O3 Ceramics (ZnO-Bi2O3-Sb2O3 세라믹스의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.738-748
    • /
    • 2008
  • In this study, it has been investigated on the changing behavior of electrical properties in $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0 and 0.5) ceramics. The samples were prepared by conventional ceramic process, and then characterized by I-V, C-V curve plots, impedance and modulus spectroscopy (IS & MS) measurement. The electrical properties of ZBS systems were strongly dependent on Sb/Bi. In ZBS systems, the varistor characteristics were deteriorated noticeably with increasing Sb/Bi and the donor density and interface state density were increased with increasing Sb/Bi. On the other hand, we observed that the grain boundary reacted actively with the ambient oxygen according to Sb/Bi ratio. Especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature. Besides, the increased pyrochlore and $\beta$-spinel phase with Sb/Bi ratio caused the distributional inhomogeneity in the grain boundary barrier height and the temperature instability. To the contrary, the grain boundary layer was relatively homogeneous and more stable to temperature change and kept the system highly nonlinear at high Bi-rich phase contents.

Effect of PbO on Microwave Dielectric Properties of (Pb, Ca) (Fe, Nb, Sn) O3 Ceramics

  • Yoon, Seok-Jin;Park, Ji-Won;Kang, Chong-Yun;Kim, Hyun-Jai;Jung, Hyung-Jin;Sergey Kucheiko;Cho, Bong-Hee
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.249-253
    • /
    • 1998
  • The influence of PbO additive on dielectric properties and sintering behavior of $(Pb_{0.46}Ca_{0.55})$ {$(Fe__1/2}Nb_{1/2}){0.9}Sn_{{0.1}$}$O_3$ ceramics has been investigated. The incorporation of a limited excess PbO ($\leq$2.0 wt. %) in the starting materials is quite beneficial for densification in the temperature range of 1150~$1175^{\circ}C$ in air. At a small doping level (0.8 wt. %) the ceramics prepared from powders calcined at $900^{\circ}C$ showed the best dielectric properties. The dielectric constants ($\varepsilon_r$) and Q.f were found to be 85.8~85.6 and 8530~8600 GHz, respectively. The temperature coefficient of resonant frequency ($\tau_f$) varied in the range of -2~4 $ppm/^{\circ}C$. Examination of the microstructure as well as analysis of the second phases in these materials revealed the presence of the pyrochlore-type phase which is detrimental to the dielectrics.

  • PDF

Effects of Dysprosium and Thulium addition on microstructure and electric properties of co-doped $BaTiO_3$ for MLCCs

  • Kim, Do-Wan;Kim, Jin-Seong;Noh, Tai-Min;Kang, Do-Won;Kim, Jeong-Wook;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • The effect of additives as rare-earth in dielectric materials has been studied to meet the development trend in electronics on the miniaturization with increasing the capacitance of MLCCs (multi-layered ceramic capacitors). It was reported that the addition of rare-earth oxides in dielectrics would contribute to enhance dielectric properties and high temperature stability. Especially, dysprosium and thulium are well known to the representative elements functioned as selective substitution in barium titanate with perovskite structure. The effects of these additives on microstructure and electric properties were studied. The 0.8 mol% Dy doped $BaTiO_3$ and the 1.0 mol% Tm doped $BaTiO_3$ had the highest electric properties as optimized composition, respectively. According to the increase of rare-earth contents, the growth of abnormal grains was suppressed and pyrochlore phase was formed in more than solubility limits. Furthermore, the effect of two rare-earth elements co-doped $BaTiO_3$ on the dielectric properties and insulation resistance was investigated with different concentration. The dielectric specimens with $BaTiO_3-Dy_2O_3-Tm2O_3$ system were prepared by design of experiment for improving the electric properties and sintered at $1320^{\circ}C$ for 2h in a reducing atmosphere. The dielectric properties were evaluated from -55 to $125^{\circ}C$ (at $1KHz{\pm}10%$ and $1.0{\pm}0.2V$) and the insulation resistance was examined at 16V for 2 min. The morphology and crystallinity of the specimens were determined by microstructural and phase analysis.

  • PDF

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Structural and Dielectric Properties of (Ba,Sr,Ca)$TiO_3$ Thick films Doped with $Dy_{2}O_{3}$ ($Dy_{2}O_{3}$가 첨가된 (Ba,Sr,Ca)$TiO_3$ 후막의 구조 및 유전 특성)

  • Yun, Sang-Eun;Lee, Sung-Gap;Park, Sang-Man;Noh, Hyun-Ji;Lee, Young-Hie;Bae, Seon-Gi
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1275-1276
    • /
    • 2007
  • For fabrication of $BaTiO_3$ system Ferroelectric thick films, (Ba,Sr,Ca)$TiO_3$ (BSCT) powders, prepared by using the alkoxide-based sol-gel method, were doped $MnCO_3$ as acceptor and $Dy_{2}O_{3}$ as donor. $MnCO_3$ and $Dy_{2}O_{3}$-doped (Ba,Sr,Ca)$TiO_3$ thick films were fabricated by screen printing techniques on high purity alumina substrates. The structure and dielectric properties were investigated with variation of $Dy_{2}O_{3}$ amount. As a result of the differential thermal analysis(DTA), exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All the BSCT thick films, sintered at $1420^{\circ}C$ for 2h, showed the typical XRD patterns of perovskite polycrystalline structure and no pyrochlore phase was observed. The average grain size and thickness of specimens no doped with $Dy_{2}O_{3}$ was 1.32mm, 52mm, respectively. The relative dielectric constant decreased and dielectric loss increased with increasing amount of $Dy_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Dy_{2}O_{3}$ were 4043 and 0.4% at 1 kHz, respectively. The relative dielectric constant gradually decreased in the measured frequency range from 0.1 to 100 kHz

  • PDF

Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.675-681
    • /
    • 2012
  • We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

Sintering and Electrical Properties According to Sb/Bi Ratio(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.682-688
    • /
    • 2012
  • In this study we aimed to examine the co-doping effects of 1/6 mol% $Co_3O_4$ and 1/4 mol% $Cr_2O_3$ (Co:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Co,Cr-doped ZBS, ZBS(CoCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were formed in all systems. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 by Cr rather than Co. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(CoCr), the varistor characteristics were improved (non-linear coefficient, ${\alpha}$ = 20~63), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to be composed of an electrically single barrier (0.94~1.1 eV) that is, however, somewhat sensitive to ambient oxygen with temperature. The phase development, densification, and microstructure were controlled by Cr rather than by Co but the electrical and grain boundary properties were controlled by Co rather than by Cr.