• Title/Summary/Keyword: pushover

Search Result 352, Processing Time 0.028 seconds

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.

Seismic Performance Evaluation of RC Structure Strengthened by Steel Grid Shear Wall using Nonlinear Static Analysis (비탄성 정적해석을 이용한 격자강판 전단벽 보강 RC구조물의 내진성능평가)

  • Park, Jung Woo;Lee, Jae Uk;Park, Jin Young;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.455-462
    • /
    • 2013
  • The effects of earthquakes can be devastating especially to existing structures that are not based on earthquake resistant design. This study proposes a steel grid shear wall that can provide a sufficient lateral resistance and can be used as a seismic retrofit method. The pushover analysis was performed on RC structure with and without the proposed steel grid shear wall. Obtain the performance point that the target structure for seismic loads applied to evaluate the response and performance levels. The capacity spectrum at performance point is nearly elastic range, so satisfied the performance objectives(LS level). And response modification factor(R factor) were calculated from the pushover analysis. The R factor approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. The R factor increases from 2.17 to 3.25 was higher than the design criteria. As a result, according to reinforcement by steel grid shear wall, strength, stiffness, and ductility of the low-rise RC structure has been appropriately improved.

Pushover Analysis of a Five-Story Steel Framed Structure Considering Beam-to-Column Connection (보-기둥 접합부를 고려한 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effect of the beam-column connection on the structural behavior. The connections were designed as a fully rigid connection and as a semirigid connection. A fiber model was utilized to describe the moment-curvature relationship of the steel beam and column, and a three-parameter power model was adopted for the moment-rotation angle of the semirigid connection. To evaluate the effects of higher modes on structural behavior, the structure was subjected to a KBC2005-equivalent lateral load and lateral loads considering higher modes. The structure was idealized as a separate 2D frame and as a connected 2D frame. The pushover analysis of 2D frames for the lateral load yielded the top displacement-base shear force, design coefficients such as overstrength factor, ductility ratio, and response modification coefficient, demanded ductility ratio for the semirigid connection,and distribution of plastic hinges. The sample structure showed a greater response modification coefficient than KBC2005, the higher modes were found to have few effects on the coefficient, and the lateral load of KBC2005 was found to be conservative. The TSD connection was estimated to secure economy and safety in the sample structure.

Seismic Evaluation of Steel Moment Frame Buildings based on Different Response Modification Factors and Fundamental Periods (반응수정계수와 주기의 영향에 대한 철골모멘트저항골조 건물의 내진성능평가)

  • Shin, Ji-Wook;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)

A Study on Seismic Performance of External Reinforcement for Unreinforced Masonry Buildings (비보강 조적조 건축물의 외부 보강에 따른 내진성능 연구)

  • Jong-Yeon Kim;Jong Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • In this study, we evaluated the seismic performance of a masonry building that was not designed to be earthquake-resistant and attempted to improve the seismic performance by adopting a seismic reinforcement method on the exterior of the building. In addition, the building seismic design standards and commentary(KDS 41 17 00:2019) and existing facility(building) seismic performance evaluation methods were applied to evaluate seismic performance, and a pushover analysis was performed using non-linear static analysis. As the result of this study, it was determined that seismic reinforcement was urgent because the distribution rate of earthquake-resistant design of houses in Korea was low and masonry structures accounted for a large proportion of houses. When reinforcing the steel beam-column+brace frame in a masonry building, the story drift angle was 0.043% in the X direction and 0.047% in the Y direction, indicating that it satisfied the regulations. The gravity load resistance capacity by performance level was judged to be a safe building because it was habitable in both X and Y directions. In conclusion, it is believed that the livability and convenience of the house can be secured by reinforcing the exterior of the building and the seismic performance and behavior of the structure can be clearly predicted.

Response Modification Factor of Steel Braced Frames (철골가새골조의 반응수정 계수)

  • 김진구;남광희;최현훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.231-238
    • /
    • 2003
  • The overstrength factor and the ductility factor are the two important factors that determines response modification factors used in current seismic codes. The objective of this paper is to obtain the overstrength and ductility factors of special concentric braced frames. For this purpose pushover analysis is performed with model structures until the maximum inter-story drift reaches 2.5% of story height. According to the analysis results, the overstrength factors increase as the height of structures decreases and the span length increases. Ductility factors for mid-story structures turns out to be higher than the other structures and span length does not contribute much to ductility factors.

  • PDF

The Nonlinear Direct Spectrum Method Improving Application and Reliability of Existing Approximate Nonlinear Methods (기존 비선형약산법들의 신뢰성 개선을 위한 비선형직접스펙트럼법)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.55-66
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}/g$ and/or ductility ratio p from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method. The conclusions of this study are as follows; (1) Nonlinear direct spectrum method is considered as a practical method which is applicable to compute the structural initial elastic period and the yielding strength from stiffness skeleton owe and calculate the nonlinear maximum response of structure directly from nonlinear response spectrum. (2) The comparison of the analysis results from NDSM and NRHA showed that the average errors were less than 20% in about 3/4 of the analysis cases, and that the results obtained from NDSM turned out to be generally larger than those from NRHA.

Elasto-plastic Earthquake Response Analysis of Beam-Shear Wall Structural System (보-전단벽식 구조 시스템의 탄소성 지진응답 해석)

  • 정명채;이정원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The objective of present paper is to investigate elasto-plastic behaviour and estimate the resistance capacity of a beam-shear wall structural system against earthquake ground accleration exciations. Pushover analysis is adopted to estimate inttiate and post stiffnesses and yielding point for inelastic response analysis in LPM (Lumped Parameter Mass) model, and modified Clough model is used as the hysteresis rule of each story. Three earthquake waves are used in the analysis but their peak ground accelerations are changed to be 0.12g, 0.24g. It is assumed that the earthquakes act in the longigtudianl direction of a 25 Story apartment building which consists of two some unit plan. The distribution of story ratio and ductility ratio are estimated and discussed within Korean, Japanese code and UBC.

  • PDF

An effective load increment method for multi modal adaptive pushover analysis of buildings

  • Turker, K.;Irtem, E.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.53-73
    • /
    • 2007
  • In this study, an effective load increment method for multi modal adaptive non-linear static (pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield conditions of column elements and geometrical non-linearity effects between successive plastic sections are linearized. Thus, load increment needed for formation of plastic sections can be determined directly (without applying iteration or step-by-step techniques) by using linearized yield conditions. After formation of each plastic section, the higher mode effects are considered by utilizing the essentials of traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the effects of stiffness changes and local mechanism at the system on lateral load distribution are included. By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties change due to plastifications in the system. In the study, a new procedure for determination of modal lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform distribution) in terms of different parameters. Second-order effects on response quantities and periods are also investigated. When the NDA results are taken as reference, it is seen that proposed method yield generally better results than all FEMA 356 procedures for all investigated response quantities.

Effects of openings geometry and relative area on seismic performance of steel shear walls

  • Massumi, Ali;Karimi, Nasibeh;Ahmadi, Mostafa
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.617-628
    • /
    • 2018
  • Steel shear wall possesses priority over many of the current lateral load-bearing systems due to reasons like higher elastic stiffness, desirable ductility and energy absorption, convenience in construction and implementation technology, and economic criteria. Besides these advantages, this system causes increase in the dimensions of other structural elements due to its high stiffness as one of its intrinsic characteristics. One of the methods for stiffness reduction is perforating the wall panel and creating openings in the wall that can also be used as windows or ducts in buildings service period. The aim of the present study is probing the appropriate geometric shape and location of opening to fulfil economic criterion plus technical and seismic design criteria. In the present research, a number of possible while reasonable opening shapes and locations are defined in various sizes for some steel shear wall specimens. The specimens are modelled in ABAQUS finite elements software and analyzed using nonlinear pushover analysis. Finally, the analyses' results are reported as force-displacement diagrams and the strength, the initial stiffness and the energy absorption are calculated for all specimens and compared together. The obtained results show that both shape and location of the openings affect the seismic parameters of the shear wall. The specimens in which the openings are further from the center and closer to the columns possess higher stiffness and strength while the specimens in which the openings are closer to the center show more considerable changes in their seismic parameters in response to increase in opening area.