• Title/Summary/Keyword: purified peptide

Search Result 381, Processing Time 0.02 seconds

Study on the Specificity Alteration of Mammalian UV Endonuclease III

  • Lee, Jae-Yung;Kim, Joon
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • A mammalian DNA repair enzyme, UV endonuclease III which also functions as a ribosomal protein S3 (rpS3), was purified from mouse cells and characterized. UV endonuclease III was previously cloned and known to yield a peptide of 32 kDa upon expression in E. coli [Kim et al., (1995) J. Bioi. Chem. 270, 13620-13629]. However, biochemically purified UV endonuclease III, which has a sedimentation coefficient of 3.25, appears to have an additional peptide of 28 kDa. It appears that two bands were derived from one complex, judging from the comparison of the nuclease activity on the native and SDS-gel electrophoreses. UV endonuclease III becomes non-specific upon purification and this phenomenon is more significant in the case of pure fractions of the enzyme. Non-specific activity was not influenced by pH or any salt conditions.

  • PDF

Overexpression of GFP-AFP Chimera Protein using Recombinant Escherichia coli and Analysis of Anti-freezing Characteristics (재조합 대장균을 이용한 GFP-AFP Chimera 단백질 과량발현 및 특성 파악연구)

  • Ko, Ji-Seun;Hong, Soon Ho
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.310-314
    • /
    • 2013
  • Antifreeze peptide from Myoxocephalus octodecemspinosus was overexpressed and purified in Escherichia coli. Green fluorescence protein-AFP chimera was constructed by integrating gfp and afp genes. Produced GFP-AFP chimera protein was purified using polyhistidine tag which was inserted at C-terminus. By addition of GFP-AFP chimera protein, freezing point of elution buffer was decreased from $-13^{\circ}C$ to $-20^{\circ}C$. This result suggested that GFP-AFP chimera can be considered as a potential candidate of novel inhibitor for gas hydrates.

Purification and Characterization of the Recombinant Bacillus pasteurii Urease Overexpressed in Escherichia coli

  • Shin, In-Seon;Lee, Mann-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.255-259
    • /
    • 1999
  • A 6.9-kb DNA fragment including the minimal Bacillus pasteurii urease gene cluster was subcloned into a high-copy-number plasmid vector, pUC19, and the recombinant B. pasteurii urease was overexpressed in Escherichia coli. The recombinant urease was purified 25.9-fold by using combinations of anion-exchange and gel-filtration chromatography followed by Mono-Q chromatography on a FPLC. N-terminal peptide sequencing analyses revealed that two distinct smaller peptide bands resolved on a 10-18% gradient SDS-PAGE corresponded to UreA and UreB peptides, respectively. It was also shown that the ureB gene was translated from a GUG codon and the first methionine residue was post-translationally cleaved off. The native molecular weight of the recombinant urease was 176,000 and 2 nickel atoms were present per catalytic unit. pH stability studies of the purified enzyme showed that the recombinant Bacillus pasteurii urease is stable in alkaline pH range, which is similar to the enzyme of the evolutionarily related bacterium, Sporosarcina ureae.

  • PDF

Biological activity of peptides purified from fish skin hydrolysates

  • Abuine, Racheal;Rathnayake, Anuruddhika Udayangani;Byun, Hee-Guk
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.10.1-10.14
    • /
    • 2019
  • Fish skin waste accounts for part of the solid waste generated from seafood processing. Utilization of fish skin by bioconversion into high-grade products would potentially reduce pollution and economic cost associated with treating fish processing waste. Fish skin is an abundant supply of gelatin and collagen which can be hydrolyzed to produce bioactive peptides of 2-20 amino acid sequences. Bioactivity of peptides purified from fish skin includes a range of activities such as antihypertensive, anti-oxidative, antimicrobial, neuroprotection, antihyperglycemic, and anti-aging. Fish skin acts as a physical barrier and chemical barrier through antimicrobial peptide innate immune action and other functional peptides. Small peptides have been demonstrated to possess biological activities which are based on their amino acid composition and sequence. Fish skin-derived peptides contain a high content of hydrophobic amino acids which contribute to the antioxidant and angiotensin-converting enzyme inhibitory activity. The peptide-specific composition and sequence discussed in this review can be potentially utilized in the development of pharmaceutical and nutraceutical products.

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

Procaryotic Expression of Porcine Acid-Labile Subunit of the 150-kDa Insulin-like Growth Factor Complex (미생물에서 돼지 150-kDa Insulin-Like Growth Factor Complex의 Acid-Labile Subunit 발현)

  • Lee, C. Young;Kang, Hye-Kyeong;Moon, Yang-Soo
    • Journal of Animal Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.177-184
    • /
    • 2008
  • Acid-labile subunit(ALS) is a 85-kDa glycosylated plasma protein which forms a 150-kDa ternary complex with 7.5-kDa insulin-like growth factor(IGF) and 40~45-kDa IGF-binding protein-3. In a previous study, the present authors prepared a porcine ALS(pALS) expression construct by inserting a pALS coding sequence into a plasmid vector following synthesis of the sequence by reverse transcription-polymerase chain reaction(RT-PCR). The expression construct, however, was subsequently found to have a mis-sense mutation at two bases of the pALS coding sequence which is presumed to have occurred through a PCR error. In the present study, the correct coding sequence was synthesized by the site-directed mutagenesis and inserted into the pET-28a(+) plasmid expression vector containing the His-tag sequence flanking the last codon of the insert DNA. After induction of the expression construct in E. coli BL21(DE3) cells, the resulting presumptive recombinant peptide was purified by the Ni-affinity chromatography. Upon SDS- PAGE, the affinity-purified peptide was resolved as a single band at a 66-kDa position which is consistent with the expected molecular mass of the presumptive recombinant pALS. Collectively, results indicate that a recombinant pALS peptide was successfully expressed and purified in the present study.

Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen

  • Kim, Yong-Tae;Kim, Se-Kwon;Jeon, You-Jin;Park, Sun Joo
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.691-696
    • /
    • 2014
  • ${\alpha}$-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. ${\alpha}$-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, ${\alpha}$-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of ${\alpha}$-enolase. In this study, we report that this peptide competes with cellular ${\alpha}$-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

Antimicrobial and Antioxidant Peptide from Bacillus Strain CBS73 Isolated from Korean Food

  • Kim, Miri;Khan, Md Maruf;Yoo, Jin Cheol
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.154-161
    • /
    • 2017
  • An antimicrobial peptides-producing Bacillus strain CBS73 was isolated from fermented food (kimchi) that produces low-molecular-weight proteins with broad-spectrum antimicrobial activity. Our goal was to explore the therapeutic potential of antimicrobial substances produced by Bacillus species. Peptide CBS73 was purified from Bacillus subtilis subsp. subtilis with identity of 99.79%. It was found to be stable at pH 4.0-10.0 and temp $20-60^{\circ}C$. A protein band around 5.2 kDa was detected in tricine-SDS-PAGE and band was confirmed by MALDI-TOF test. Peptide CBS73 showed antimicrobial activity against MDR bacteria. The minimal inhibitory concentration (MIC) of peptide CBS73 for vancomycin-resistant S. aureus (VRSA), vancomycin resistant Enterococci (VRE) and Salmonella typhimurium ranged from $10-40{\mu}g/mL$. The antioxidant activity of peptide CBS73 was measured by DPPH scavenging, reducing power activity and total phenolic content. Cell viability and NO production result showed less cytotoxic effect upto $12{\mu}g/mL$. Peptide CBS73 could be a promising antimicrobial agent for clinical application.

Purification of a Novel Anticancer Peptide from Enzymatic Hydrolysate of Mytilus coruscus

  • Kim, Eun-Kyung;Joung, Hong-Joo;Kim, Yon-Suk;Hwang, Jin-Woo;Ahn, Chang-Bum;Jeon, You-Jin;Moon, Sang-Ho;Song, Byeng Chun;Park, Pyo-Jam
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1381-1387
    • /
    • 2012
  • We applied enzymatic hydrolysis and tangential flow filtration (TFF) to purify a novel anticancer peptide from Mytilus coruscus (M. coruscus) and investigated its anticancer properties. To prepare the peptide, eight proteases were employed for enzymatic hydrolysis. Pepsin hydrolysates, which showed clearly superior cytotoxic activity on prostate cancer cells, were further purified using a flow filtration system using a TFF and consecutive chromatographic methods. Finally, a novel anticancer peptide was obtained, and the sequence was identified as Ala-Phe-Asn-Ile-His-Asn-Arg-Asn-Leu-Leu. The peptide from M. coruscus effectively induced cell death on prostate, breast and lung cancer cells but not on normal liver cells. This is the first report of an anticancer peptide derived from the hydrolysates of M. coruscus.

The Antimicrobial Characteristics of McSSP-31 Purified from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus (참담치(Mytilus coruscus) 혈구(hemocyte)에서 분리한 McSSP-31의 항균 특성 분석)

  • Oh, Ryunkyoung;Lee, Min Jeong;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Joo-Won;Park, Jung-Youn;Seo, Jung-Kil;Kim, Dong-Gyun
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1276-1289
    • /
    • 2017
  • This study isolated and purified the antimicrobial peptide McSSP-31 from an acidified hemocyte extract of a Mytilus coruscus. The antimicrobial peptide was purified by using a $C_{18}$ reversed-phase high-performance liquid chromatography (HPLC). The peptide was determined to be 3330.549 Da by matrix assisted-laser desorption ionization time-of-flight mass spectrophotometer (MALDI-TOF/MS). The N-terminus of a 14 amino-acid sequence was identified as P-S-P-T-R-R-S-T-S-R-S-K-S-R by Edman degradation method. The acquired sequence showed a 93% similarity with the sperm-specific protein Phi-1, which is from M. californianus. The identified open-reading frame (ORF) of peptide was 306 bp encoding 101 amino acids, which was analyzed by rapid amplification of cDNA ends (RACE), cloning and sequencing analysis. We compared the full sequence with other known proteins that reveal the sperm-specific protein Phi-1 (93.5%) of M. californianus. Synthesized antimicrobial peptide (McSSP-31) showed antibacterial activity against gram-positive bacteria including B. subtilis, S. mutans, S. aureus and gram-negative bacteria including E. coli, K. pneumoniae, P. mirabilis, P. aeruginosa and fungi, C. albicans. Also, synthesized peptide showed strong antibacterial activity against antibiotic-resistant strains, including S. aureus. The cytotoxicity of the peptide was determined by using the HUVEC human cell line. The peptide did not exhibit any significant cytotoxic effects on the normal human cell line, and it had very low hemolytic activity with flounder hemoglobin. The results demonstrated that peptide purified from the hemocyte of a M. coruscus exhibits antibacterial activity against various bacteria and has the potential to be an alternative antibiotic agent.